

2002	and	Bev a	ond	1-7
2010/5/3				 Ron-Yi Liu
Semiconductor Industry A	ssociatio	on (SIA)) Road M	Лар,
1998 Update Technology (nm) Minimum mask count Wafer diameter (mm) Memory-samples (bits) Transistors/cm ² (μP) Wiring levels (maximum) Clock, local (MHz) Chip size: DRAM (mm ²) Chip size: mP (mm ²)	1999 180 22/24 300 1G 6.2M <i>6-7</i> 1,250 400 340	300 4G 18M 7 2,100 560	35 29/30 450 1T 390M <i>10</i> 10,000 2240	IEEE Spectrum, July 2009 Special report: "The 100- million transistor IC"
Power supply (V) Maximum Power (W) Number of pins (μP) These scaling trends will allow the elect	<i>90</i> 700	<i>130</i> 957	3,350	

10/5/3			Rom-Yi I
標準	802.16	802.16-2004	802.16-2005
Bit Rate(Mbps)	32-134 (in 28MHz channel bandwidth)	Up to 75 (in 20MHz channel bandwidth)	Up to 15 (in 5MHz channel bandwidth)
Mobility	Fixed	Fixed,Portable	Fixed,Portable,Mobility
Spectrum(GHz)	10-66	<11	<6
Channel Conditions	Line of Sight only	Non Line of Sight	Non Line of Sight
Channel Bandwidths(MHz)	20,25,28	Scalable 1.5-20	Scalable 1.5-20
Typical Cell Radius (KM)	2-5	7-10 (Max Range 50)	2-5
Completed	2001/12	2004/06	2005/12

The Comparison of WiMAX and HSDPA 010/5/3 Ron-Yi I						
Data Rate	75 Mbps/20MHz	15 Mbps/5MHz	14.4Mbps/5MHz			
Cell Radius	5 km	5 km	2 km			
Mobility	Portable	Up to 100 km/hr	Up to 120 km/hr			
Freq. Allocation	2~11GHz	2~6GHz	1.9~2.2GHz			
Spectral Efficiency	3.75 bps/Hz	3 bps/Hz	2.9 bps/Hz			
Access Technology	OFDM	OFDM/OFDMA	CDMA			
Modulation	BPSK, QPSK, 16QAM, 64QAM	BPSK, QPSK, 16QAM, 64QAM	BPSK, QPSK, 16QAM			

Poles and Quadratic Factors of Normalized LP Butterworth Function

m-ti Lii

1-45

Table 9.7-1 - Pole locations and quadratic factors $(s_n^2 + a_1s_n + 1)$ of normalized, low pass Butterworth functions for $\varepsilon = 1$. Odd orders have a product (s_n+1) .

2010/5/2

Ν	Poles	a_1 coefficient
2	-0.70711 ± j0.70711	1.41421
3	-0.50000 ± j0.86603	1.00000
4	-0.38268 ± j0.92388	0.76536
	-0.92388 ± j0.38268	1.84776
5	-0.30902 ± j0.95106	0.61804
	-0.80902 ± j0.58779	1.61804
6	-0.25882 ± j0.96593 -0.96593 ±	j0.25882 0.51764 1.93180
	-0.70711 ± j0.70711	1.41421
7	-0.22252 ± j0.97493 -0.90097 ±	,
	-0.62349 ± j0.78183	1.24698
8	-0.19509 ± j0.98079 -0.83147 ±	
	-0.55557 ± j0.83147 -0.98079 ±	
9	-0.17365 ± j0.98481 -0.76604 ±	
	-0.50000 ± j0.86603 -0.93969 ±	
10	-0.15643 ± j0.98769 -0.89101 ±	
	-0.45399 ± j0.89101 -0.98769 ±	
	$-0.70711 \pm i0.70711$	1.41421

Poles and Quadratic Factors of Normalized LP Chebyshev Function

2010/5/3

Table 9.7-2 - Pole locations and quadratic factors $(a_0 + a_1s_n + s_n^2)$ of normalized, low pass Chebyshev Normalized Pole a_0 a_1 Locations -0.54887 ± j0.89513 1.10251 1.09773 -0.24709 ± j0.96600 0.99420 0.49417 -0.49417 -0.13954 ± j0.98338 0.98650 0.27907 $\overline{4}$ -0.33687 ± j0.40733 0.27940 0.67374 -0.08946 ± j0.99011 0.98831 0.17892 5 -0.23421 ± j0.61192 0.42930 0.46841 -0.28949

0.99073

0.55772

0.12471

0.99268

0.65346

0.23045

0.12436

0.33976

0.46413

0.09142

0.25615

0.37014

-0.06218 ± j0.99341

-0.16988 ± j0.72723

-0.23206 ± j0.26618

-0.04571 ± j0.99528

-0.12807 ± j0.79816

-0.18507 ± j0.44294

-0.20541

6

functions for $\varepsilon = 0.5088 (1dB)$.

1-49

5	th -Ora	ler Cl	hebys	shev l	LP F	ilter I	Desig	n n	
5/3								Ron-Vi	
Switca	p2 Input File	e (The exact	same result	ts were obtai	ned as for S	SPICE)			
TITLE:	TITLE: EXAMPLE 9-7-5			(60) (70)	#CLK; CLK;	CL53 C23	(67) (8200)	0.2058; 1;	
NOLIS GRID;	OPTIONS; NOLIST; GRID; END;			(7 8) (300 9) (9 0) (2 3)	#CLK; #CLK; #CLK; 0.3123;	El E2 END;	(5 0 0 4) (200 0 0 8)	1E6; 1E6	
TIMINO	TIMING; PERIOD 50E-6;			(3 9) (4 300) (4 5)	0.3123; 0.1799; 1;	CIRCUI X1 X2	(1 100) (100 200)	STG1; STG3;	
END;	CLOCK CLK 1 (0 25/50); END; SUBCKT (1 100) STG1;			(67) (8300) (5004) (300008)	0.3123; 1; 1E6; 1E6	X3 V1 END;	(200 300) (2 0);	STG2;	
S1 S2	S1 (12) CLK; S2 (20) #CLK;			. ,		INFRE(ZE SSS; Q 1 3000 LIN	N 150;	
S3 S4				T (100 200) S (100 2) (2 0)	IG3; #CLK; CLK;	PRINT	SET V1 AC 1.0 0.0; PRINT vdb(100) vp(100); PRINT vdb(200) vp(200);		
55 S6 CL11 CL21	(5 0) (2 3) (3 5)	CLK; 0.0909; 0.0909;	82 83 84 85	(30) (34) (65)	CLK; #CLK; CLK;	PRINT	vdb(300) vp(2 vdb(300) vp(3 vdb(300);		
E1 END;	(100 0 0 4)	1E6;	86 87 88	(6 0) (7 0) (7 8)	#CLK; CLK; #CLK;	END;			
S1 S2	T (200 300) 8 (200 2) (2 0)	#CLK; CLK;	S9 S10 CL13	(200 9) (9 0) (2 3)	#CLK; #CLK; 0.2058;				
53 54 55	(30) (34) (65)	CLK; #CLK; CLK;	CL23 CL63 C13	(39) (97) (45)	0.2058; 0.1471; 1;				

