

Chip Design: from 1961 to 2005

2010/5/3

The first planar integrated circuit, 1960. Designed and built by Lionel Kattner and Isy Haas under the direction of Jay Last at Fairchild Semiconductor.

The I ntel "Montecito" microprocessor, 2005.

	Systems: from 1946 to 2005		
$22^{20053} 3$			

Fixed Wireless Broadband

2010/5/3

Proprietary solutions moving to WiMAX standard :

- Up to 30KM in Rural

802.16 Communication Specification

2010/5/3

標準	802.16	$802.16-2004$	$802.16-2005$
Bit Rate(Mbps)	$32-134$ (in 28MHz channel bandwidth)	Up to 75 (in 20MHz channel bandwidth)	Up to 15 (in 5MHz channel bandwidth)
Mobility	Fixed	Fixed,Portable	Fixed,Portable,Mobility
Spectrum(GHz)	$10-66$	<11	<6
Channel Conditions	Line of Sight only	Non Line of Sight	Non Line of Sight
Channel Bandwidths(MHz)	$20,25,28$	Scalable $1.5-20$	Scalable $1.5-20$
Typical Cell Radius (KM)	$2-5$	$7-10$ Range 50)	$2004 / 06$

The Comparison of WiMAX and HSDPA

2010/5/3

	$802.16-2004$	802.16 e	HSDPA
Data Rate	$75 \mathrm{Mbps} / 20 \mathrm{MHz}$	$15 \mathrm{Mbps} / 5 \mathrm{MHz}$	$14.4 \mathrm{Mbps} / 5 \mathrm{MHz}$
Cell Radius	5 km	5 km	2 km
Mobility	Portable	Up to $100 \mathrm{~km} / \mathrm{hr}$	Up to $120 \mathrm{~km} / \mathrm{hr}$
Freq. Allocation	$2 \sim 11 \mathrm{GHz}$	$2 \sim 6 \mathrm{GHz}$	$1.9 \sim 2.2 \mathrm{GHz}$
Spectral Efficiency	$3.75 \mathrm{bps} / \mathrm{Hz}$	$3 \mathrm{bps} / \mathrm{Hz}$	$2.9 \mathrm{bps} / \mathrm{Hz}$
Access Technology	OFDM	OFDM/OFDMA	CDMA
Modulation	BPSK, QPSK, 16QAM, 64QAM	BPSK, QPSK, 16QAM, 64QAM	BPSK, QPSK, 16QAM

Design Abstraction Levels

Fig. 1.2, Mixed-signal system-on-a-chip integration

-Analog filter uses analog electronic circuits from components, such as: resistors, capacitors and Inductors, to produce the required filtering effect.
-Advantages:
$>$ simple circuit design.
$>$ fast and simple realization.
-Disadvantages:

$>$ Little stable and sensitive to temperature variations.
$>$ Very expensive to realize in large amounts.
$>$ Aged effect.
> Noise indued to Inductor.

| Filter
 specifications\ldotsContinuous-
 Time Filter | |
| :--- | :--- | :--- |
| | Gm-C, Active RC-
 MOS-C or SC
 Filter Design |

-This ideal Filter specification cannot be achieve by realizable filters because an instantaneous transition from a gain of 1 to 0 is not possible.
\square Filter Synthesis: Synthesis is generally not unique. More than one circuit can satisfie $\mathrm{H}(\mathrm{s})$.
aToday's Gm-C, Active-RC, MOS-C or switched capacitor filters are based on continuous time filters. Consequently, it is expedient to briefly review the subject of continuous time filters.
-Gm-C, Active-RC, MOS-C or Switched Capacitor Filter approximations which closely approximate the ideal filter but are realizable.

Continuous-time Anti-aliasing Filter Design

2010/5/3 R(m-ytitu

Figure 5. Low-Pass Sallen-Key Circuit

$$
\begin{aligned}
& \quad \frac{V o}{V i}(I p)=\frac{K}{s^{2}(R 1 R 2 C 1 C 2)+s(R 1 C 1+R 2 C 1+R 1 C 2(1-K))+1} \\
& \text { By letting } \\
& s=j 2 \pi f, \quad f c=\frac{1}{2 \pi \sqrt{R 1 R 2 C 1 C 2}}, \text { and } Q=\frac{\sqrt{R 1 R 2 C 1 C 2}}{R 1 C 1+R 2 C 1+R 1 C 2(1-K)} .
\end{aligned}
$$

[^0]
Analog Continuous-Time Monolithic Filter
 201053

- Monolithic Filter : Low cost, good matching, reduce parasitic capacitance and automatic tuning for processing and temperature variation.
- Differential Equation from Laplace Transform: $s=j w$.
\Rightarrow Higher frequency response, lower power dissipation and area \Rightarrow Lower Dynamic Range (DR).
- The standard active-RC filter: R,C and Op Amps with feedback loop.
- MOSFET-C filters : Op Amps and resistors often implemented with MOSFETs.
- Gm-C filters :resistors replaced by transconductors (used as open loop).
- Most straightforward design!

The Active-RC Filters

2010/5/3

- The drawbacks of Active-RC filters (R, C and Op Amp):
\Rightarrow Smaller size than the passive filter (especially in low frequency).
\Rightarrow It is impossible to integrate the Resistor and Cap. into a Chip for $1 \mathrm{pf}->2500(50 \times 50) \mathrm{um}^{2}\left(4 \mathrm{mil}^{2}\right)$. 100pf ??
If : Voice band filter ($0 \sim 4 \mathrm{KHz}$) :
$R C=10 \mathrm{krad} / \mathrm{s}, \mathrm{C}=10 \mathrm{pf}, \mathrm{R}=10 \mathrm{M} \Omega->10^{6} \mathrm{um}^{2}\left(1600 \mathrm{mil}{ }^{2}\right)$.

1. The overall chip area is around $20,000 \mathrm{mil}^{2}$ for this circuit.
2. The Poly-Si or Diffusion resistor is nonlinear.
3. The error of resistor is 10%, and the error of capacitor is 10%
\Rightarrow The error of $R C$ time constant is 20% !
4. The temperature and voltage coefficients of $R C$ time constant are not correlated and serious.
$\Rightarrow R C$ variation $=\sim 50 \%$ with fabrication process, temperature.

- The Active-RC and SC Filters are relatively mature technologies.
- The Active-Gm/C Filter offers potential applications up to VHF.

- Moderate-to-high frequency precision (with tuning).
\Rightarrow Small area and low power dissipation for $\mathrm{f}<100 \mathrm{kHz}$.
- Feedback structure reduces sensitivity to parasitic.
- Can be realized as all biquad type circuits.

But:

- On-chip tuning and corresponding circuitry is required.
- Fully-balanced-differential structures for increasing linearity.
- Op Amps and feedback circuits limit the filter -3dB cutoff frequency. \Leftarrow The RC time constant in Filter must be at most 5\% or 10% of Unity Gain bandwidth to avoid the pole frequency and quality factor error.
- Not suited for high-frequency applications !

Filter Types

2010/5/3

- Different types of polynomials :
\checkmark Butterworth - smooth, well behaved, commonly used.
\checkmark Chebyshev - faster roll-off but with ripple in either passband or stopband.
\checkmark Elliptical - faster roll-off but with ripple in both passband and stopband.
\checkmark Bessel-Approximately Linear Phase.

$$
H(f)=\frac{a_{0}}{b_{0}+b_{1} s+\cdots+b_{n} s^{n}}
$$

Characterization of Filter
 2010/5/3

$\square A$ low pass filter magnitude response.

Three basic properties of filters.
1.) Passband ripple $=\left|T(j 0)-T\left(j \omega_{P B}\right)\right|$.
2.) Stopband frequency $=\omega_{S B}$.
3.) Stopband gain/attenuation $=T\left(j \omega_{S B}\right)$.

For a normalized filter the basic properties are:
1.) Passband ripple $=T\left(j \omega_{P B}\right) / T(j 0)=T\left(j \omega_{P B}\right)$ if $T(j 0)=1$.
2.) Stopband frequency (called the transition frequency) $=\Omega_{n}=\omega_{S B} / \omega_{P B}$.
3.) Stopband gain $=T\left(j \omega_{S B}\right) / T(j 0)=T\left(j \omega_{S B}\right)$ if $T(j 0)=1$.

Filter Specification by Bode Plot

(b.)

Figure 9.7-2 - (a.) Low pass filter of Fig. 9.7-1 as a Bode plot. (b.) Low pass filter of Fig. 9.7-2a shown in terms of attenuation $(A(j \omega)=1 / T(j \omega))$.

Therefore,
Passband ripple $=T\left(j \omega_{P B}\right) \mathrm{dB}$
Stopband gain $=T\left(j \omega_{S B}\right) \mathrm{dB}$ or Stopband attenuation $=A\left(j \omega_{P B}\right)$
Transition frequency is still $=\Omega_{n}=\omega_{S B} / \omega_{P B}$

Butterworth Filter Approximation

where N is the order of the approximation and ε is defined in the above plot
The magnitude of the Butterworth filter approximation at $\omega_{S B}$ is given as

$$
\left|T_{L P n}\left(\frac{j \omega_{S B}}{\omega_{P B}}\right)\right|=\left|T_{L P n}\left(j \Omega_{n}\right)\right|=T_{S B}=\frac{1}{\sqrt{1+\varepsilon^{2} \Omega_{n}^{2 N}}}
$$

This equation in terms of dB is useful for finding N given the filter specifications.
$20 \log _{10}\left(T_{S B}\right)=T_{S B}(d B)=-10 \log _{10}\left(1+\varepsilon^{2} \Omega_{n}^{2 N}\right)$

Poles and Quadratic Factors of Normalized LP Butterworth Function

Table 9.7-1 - Pole locations and quadratic factors $\left(s_{n}^{2}+a_{1} s_{n}+1\right)$ of normalized, low pass Butterworth functions for $\varepsilon=1$. Odd orders have a product $\left(s_{n}+1\right)$.

N	Poles		a_{1} coefficient	
2	$-0.70711 \pm j 0.70711$	1.41421		
3	$-0.50000 \pm j 0.86603$	1.00000		
4	$-0.38268 \pm j 0.92388$	0.76536		
	$-0.92388 \pm j 0.38268$	1.84776		
5	$-0.30902 \pm j 0.95106$	0.61804		
6	$-0.80902 \pm j 0.58779$		1.61804	
7	$-0.25882 \pm j 0.96593$	$-0.96593 \pm j 0.25882$	0.51764	1.93186
	$-0.70711 \pm j 0.70711$		1.41421	
8	$-0.6252 \pm j 0.97493$	$-0.90097 \pm j 0.43388$	0.44505	1.80194
	$-0.19509 \pm j 0.78183$		1.24698	
9	$-0.55557 \pm j 0.83147$	$-0.83147 \pm j 0.555557$	0.39018	1.66294
	$-0.17365 \pm j 0.98481$	$-0.98079 \pm j 0.19509$	1.11114	1.96158
10	$-0.50000 \pm j 0.86603$	$-0.93904 \pm j 0.64279$	0.34730	1.53208
	$-0.15643 \pm j 0.98769$	$-0.89101 \pm j 0.34202$	1.00000	1.87938
	$-0.45399 \pm j 0.89101$	$-0.98769 \pm j 0.15643$	0.31286	1.78202
	$-0.70711 \pm j 0.70711$		0.90798	1.97538

Poles and Quadratic Factors of Normalized LP Chebyshev Function

Table 9.7-2 - Pole locations and quadratic factors $\left(a_{0}+a_{1} s_{n}+s_{n}^{2}\right)$ of normalized, low pass Chebyshev functions for $\varepsilon=0.5088(1 \mathrm{~dB})$.

N	Normalized Pole Locations	a_{0}	a_{1}
2	$-0.54887 \pm \mathrm{j} 0.89513$	1.10251	1.09773
3	$-0.24709 \pm \mathrm{j} 0.96600$	0.99420	0.49417
	-0.49417		
4	$-0.13954 \pm \mathrm{j} 0.98338$	0.98650	0.27907
	$-0.33687 \pm j 0.40733$	0.27940	0.67374
5	$-0.08946 \pm j 0.99011$	0.98831	0.17892
	$-0.23421 \pm \mathrm{j} 0.61192$	0.42930	0.46841
6	-0.28949	$-0.06218 \pm \mathrm{j} 0.99341$	0.99073
	$-0.16988 \pm \mathrm{j} 0.72723$	0.55772	0.12436
	$-0.23206 \pm \mathrm{j} 0.26618$	0.12471	0.46416
7	$-0.04571 \pm \mathrm{j} 0.99528$	0.99268	0.09142
	$-0.12807 \pm \mathrm{j} 0.79816$	0.65346	0.25615
	$-0.18507 \pm \mathrm{j} 0.44294$	0.23045	0.37014
	-0.20541		

Comparison of Classical Filter

$\square \alpha_{\max }=0.5 \mathrm{~dB}, \omega_{\mathrm{p}}=15.9 \mathrm{KHz}, \alpha_{\min }=50 \mathrm{~dB}, \omega_{\mathrm{s}} / \omega_{\mathrm{p}}=1.5 \Rightarrow$ Butterworth $n=17$, Chebyshev $n=8$, Elliptic filter $n=5$ (due to the narrower TB).
\square Order : $\alpha_{\max }=0.25 \mathrm{~dB}, \omega_{\mathrm{p}}=100 \mathrm{Krad} / \mathrm{s}, \alpha_{\min }=18 \mathrm{~dB}, \omega_{\mathrm{s}}=140 \mathrm{Krad} / \mathrm{s}$ \Rightarrow Butterworth $n=11$, Chebyshev $n=5$, Elliptic filter $n=4$.
$\square Q-v a l u e$:
$\alpha_{\max }=0.25 \mathrm{~dB}, \alpha_{\min }=18 \mathrm{~dB}, \mathrm{n}=5, \mathrm{Q}_{\mathrm{C}}>\mathrm{Q}_{\mathrm{IC}}$.
$Q^{2}{ }_{C}=1.573 Q^{2}{ }_{\text {IC }}-0.1434$

\square Circuit realization : Generally, the order of Analog active filter N is limited below 10. The order is better in the range of $4 \sim 6$.

Comparison of Classical Low Pass Filter

■Butterworth is the most popular response. It has no ripple in the pass or stop.
■Chebyshev response has more roll off than Butterworth.
■Inverse Chebyshev response has ripple in the stop band, and therefore has a lot of rejection near the corner frequency, but the rejection bounces back, and there is some passage in the stop band. ■Elliptical response combines the characteristics of Chebyshev and inverse Chebyshev, having ripple in the pass band and in the stop band. Like the inverse Chebyshev, the stop band rejection has some bounce back.
■Bessel response has less rolloff in the stop band than the other types, and is not as flat in the pass band.

Biquad and Ladder Filter Design

- Biquad filters: Sensitivity and Noise in key issue.
\checkmark Higher sensitivity of component variations.
\checkmark Easier to compute-divide problem into
subproblems (cascade-second order filters such as:
Butterworth, Chebyshev, Elliptic (Cauer) and Bessel
(linear Phase) etc.).
\checkmark Active elements: R, C and Op Amp.
\checkmark 5th orderBiquad : 1st + Hi-Q + Low-Q
\checkmark 6th orderBiquad : Hi-Q + Mid-Q + Low-Q
\checkmark SCF, Gm-C Filter.
- Ladder filters: Good choice!!
\checkmark Low sensitivity to component variations.
\checkmark Not Easy to compute - by Table filters such as: Butterworth, Chebyshev, Elliptic (Cauer) and Bessel (linear Phase) etc.
\checkmark Passive elements such as : R, L and C.
\checkmark SCF, Gm-C Filter.

Digital Filter

- Digital Filters : DSP
\Rightarrow Discrete time system by Difference Equation.
$\Rightarrow A / D$ introduces quantization noise.
\Rightarrow Z-transform, Z^{-1} is the unity delay.
\Rightarrow With Programmability and larger Dynamic Range (DR).

Switched Capacitor Filter Design

The Concept of SC Networks

2010/5/3

- The most popular approach in analog signal processing since early 1970.
- Compatibility with standard CMOS process technologies.
- No AID and DIA converters \Rightarrow Analog Sampled Data (Discrete time signal) system with DSP concept.
- Accurate discrete-time frequency (0.1\%) \Rightarrow since the Filter coefficients (time constant) determined by Capacitor Ratio and clock (sampling) frequency.
- Very Good voltage linearity.
- Good Process and Temperature characteristics.
- Switched Capacitor Network's (SCN) main Applications :
\checkmark Filter, ADC and DAC, Sigma-Delta Modulators, Gain-stages in DAC, Voltage-Control Oscillators, Decimation and Interpolation Filter.

CMOS Switches

2010/5/3

- NMOS or PMOS switch only $\Rightarrow \mathrm{V} 1$ or $\mathrm{V} 2\left(=\mathrm{v}_{\mathrm{DD}}-\mathrm{v}_{\mathrm{tn}}=0 \sim 4 \mathrm{v}\right)$ due to the body effect or $\left(=\mathrm{v}_{\mathrm{DD}}-\mathrm{v}_{\mathrm{tp}}=1 \sim 5 \mathrm{v}\right) . \Rightarrow \mathrm{CMOS}$ switch.
- CMOS switch can cancel the nonlinear effects from Nonlinear parasitic cap, channel charge injection, clock feed through, Noise and capacitive coupling from logic signal to each side of the CMOS switch.

Switched Capacitor Filter

- Switched Capacitor (Sampled-Data) Filters : Discrete (sampled) time but continuous (analog) in amplitude.
\checkmark Resistors replaced by switched capacitors.
\checkmark Parasitic Capacitance insensitive.
\checkmark Very high precision without tuning.
\checkmark Fully-balanced-differential structures for high dynamic range (DR).
\checkmark Small area and low power dissipation.
- Much more widely used!

Basic Concepts of SCF

- General Switched Capacitor Networks (SCNs) :
- Ideal capacitors, ideal voltage-controlled voltage sources (VCVS), ideal switches and sampled-data voltage inputs.
- VCVS \Rightarrow Freq. indep. gain amps or infinite gain Op Amp.
\Rightarrow Typically, the sampled-data voltage inputs is only single, not multiple.
\Rightarrow The input may be a continuous or Sampled-and-Hold $(\mathrm{S} / \mathrm{H})$ signal.
\Rightarrow The voltages of nonideal switches, non-ideal OP AMPs, non-ideal cap. should be considered as second order effects.

Switched Capacitor Filter

- Switched Capacitor (Sampled-Data) Filters : Discrete (sampled), But:
\checkmark Needs clock circuits.
\checkmark Sample-data effects: Needs Anti-aliasing Filter required to prevent the high frequency signal input.
\checkmark Reconstruction (smoothing) filter is required to smoothen the staircase signal and high frequency noise.
\checkmark S-to-Z-transform by Bilinear and LDI (Realize functions with no CT equivalent)
\checkmark Inefficient use of Op Amp's bandwidth: $f_{\text {cutoff }}$ Fs >> 1 for $\operatorname{Sinc}(x)=\sin (x) / x$ (Sampled/Hold) Effect.
\checkmark Not suited for high-frequency applications (less than 50 MHz LP Filter).

The s-z Transformation

The LDI S-z Transform Method

2010/5/3

- The LDI-z transformation (midpoint integration):
\Rightarrow Warping effect (frequency axis expand)!
\Rightarrow Approximately design the LC ladder filter.

	Z-domain digital Filter : FDS Synthesizer by SPW	${ }^{1-73}$
		Ren-lit Litu

- Simpler Z-domain digital Filter synthesizer (according to the filter spec. and sampling frequency). \Leftarrow However, this architecture will have higher Filter coefficient sensitivity.
- The biquadratic circuit's $\mathrm{H}(\mathrm{z})$ for $6^{\text {th }}$ order (2-2-2) or $5^{\text {th }}$ order (1-2-2) can be designed in the Z-domain directly (choose the Chebyshev, Elliptic, Bessel filter type) in SPW or Matlab.
- Realized (Synthesized) the Z-domain coefficients by the capacitor's ratio of SC biquadratic circuits such as Laker's SC blocks from $\mathrm{H}(\mathrm{z})$.
- Simulated again by SWITCAP II for spec. checking (include the dynamical capacitor scaling in each op amp output, and minimum capacitor scaling in each virtual GND.
- Overall SC mixed-signal circuits layout (Be careful in choosing unit capacitor, Cu).

- SCN is a LTV (Linear Time Varying) system and not easily simulated by HSPICE for frequency response.
- SCN is a Linear System with less HD.
- SC integrator approximates the ideal continuous-time integrator when the input frequency is much less than the sampling frequency.
- HSPICE case : This tool is not a good simulation method! (Example 9.7-5 Allen's book, page 541, 569~580) so you better use SWITCAP II and SpectreRF.

(a)

(b)

	$5^{\text {th }}$-order Chebyshev LP Filter Design		
200053			

Micropower Low Pass Ladder Filter Simulation

Low Pass Ladder Filter Simulation Result
 1-79

```
C6 (7 8) 6.875
C8 (9 12)}8.6
C9 (10 13) 1.625
C10 (10 0) 1.3;
C11 (14 15) 1.1
C12 (15 16) 1.0;
C13 (16 17) 0.75
C14 (17 18) 0.5
C14 (17 18) 0.5
C16 (8 9)0.5:
E1 (8007) 7413
E2(190011) 7413;
E3 (12009) 7413;
E4 (100013)7413
V1 (1 0);
END;
ANALYZE SSS;
INFREQ 0.001 20000 LIN 50
SET V1 AC 10;
PRINT VDB(8) VDB(19) VDB(12) VDB(10);
PLOT VDB(8) VDB(19) VDB(12) VDB(10);
END;
END;
```


-Dynamic scaling.
-Minimum Capacitor Spread Scaling.

The Dynamic Range (DR) Scaling of Capacitors

The Optimization of the dynamic range using Scaling Procedures :
\Rightarrow Improve the actual performance and avoid the saturation of each $O P$ AMP.

- Let all branches connected to the output terminal OAi be modified such that their Q/Vi (transfer functions) in F4, F5 and F6 are multiplied by a positive factor K.
- This can be achieved by multiplying all capacitors in these branches by Ki.
- Since the input branches and their voltages were unchanged the charge flowing in the feedback branch is remain at its origiff $\left.Q_{4}\left(\frac{4}{a}\right)_{1} \overline{\bar{u}} .-\Delta Q_{1}(4)-\Delta Q_{2}(4)-\Delta Q_{3}(4)\right)$
- The voltage scaling does not affect charge flowing from the scaled branch to the rest of the circuits. \Rightarrow Only Vi -> Vi/Ki, all other voltages or charges are not affected.
- Vmax/Ap > Vin,max , Ap : passband gain, Vin,max is the max. input signal which the SCF can handle without excessive F_{7} nonlinear distortion.

$$
\begin{array}{lll}
\\
V_{1}-\mathrm{F}_{1} & \vdots \\
V_{2} \\
V_{3}
\end{array}
$$

The Optimum Dynamic Scaling of Capacitors in SCFs

2010/5/3
Rom-If UHiU

- For maximum dynamic range, all Op-Amp outputs should be scaled to OdB such that (at its own maximum frequency) each saturates for the same input voltage level.

1. $O A_{2}$ will saturate before $O A_{5}$, because $\left|V_{2}\right|>\left|V_{5}\right|$ for $W \sim w_{2}$.
2. $V_{\text {in, max }}=V_{\max } / A_{2}, \mathrm{~A}_{2}=\left|\mathrm{V}_{\mathrm{p} 2} / \mathrm{V}_{\mathrm{in}}\right|, \mathrm{Ap}=\left|\mathrm{V}_{\mathrm{p} 5} / \mathrm{V}_{\mathrm{in}}\right| \Rightarrow \mathrm{A}_{2}=\mathrm{Ap}\left|\mathrm{V}_{\mathrm{p} 2} / \mathrm{V}_{\mathrm{p} 5}\right|$
3. $V_{\text {in, max }}=V_{\max } / A_{2}=\left[V_{\max } / \mathrm{Ap}\right]\left|\mathrm{V}_{\mathrm{p} 5} / \mathrm{V}_{\mathrm{p} 2}\right|<V_{\max } / \mathrm{Ap}$. since $\mid \mathrm{V}_{\mathrm{p} 5} / \mathrm{V}_{\mathrm{p} 2} ل_{\mathrm{p}}$
\Rightarrow Maximum Vin decrease, then Dynamic range decrease.

- Reduce V_{2} by scaling, $\mathrm{V}_{2}^{\prime}(w)=\mathrm{V}_{2}(w) / \mathrm{K}_{2}, \mathrm{~K}_{2}=\mathrm{V}_{\mathrm{p} 2} / \mathrm{V}_{\mathrm{p} 5}$.
$\Rightarrow \mathrm{V}^{\prime}{ }_{2}$ has a peak value $\mathrm{V}_{\mathrm{p} 2}^{\prime}$ (which is equal to $\mathrm{V}_{\mathrm{p} 5}$), then $\mathrm{V}_{i n, \max }=$ $V_{\max } / \mathrm{Ap}$
- Similarly, $\mathrm{K}_{3}=\mathrm{V}_{\mathrm{p} 3} / \mathrm{V}_{\mathrm{p} 5}<1, \mathrm{~K}_{1}=\mathrm{V}_{\mathrm{pl}} / \mathrm{V}_{\mathrm{p} 5}<1, \mathrm{~K}_{4}=\mathrm{V}_{\mathrm{p} 4} / \mathrm{V}_{\mathrm{p} 5}<1$
- Scaling for optimum dynamic range may also reduce the sensitivity to the finite Op-Amp gain effects

The Minimum Capacitor Scaling of SCFs

2010/5/3

- The Optimization of the Min. Capacitor Scaling Procedures :
\Rightarrow Reduce the overall silicon area (The total capacitor value in SCFs) .
- Let all branches connected to the input terminal OAi be multiplied by a positive factor m_{i}.
$\Rightarrow C_{i} \rightarrow m_{i} C_{i}, \quad \mathrm{Q}_{n}\left(\mathrm{n}=1,2,3\right.$ and 4) $\quad->\Delta \mathrm{Q}^{\prime}{ }_{n}=m_{i} \boldsymbol{\Delta} \mathrm{Q}_{n}$
$V_{i}^{*}=\frac{\Delta Q_{4}}{F_{4}^{\prime}}=\frac{m_{1} \Delta Q_{4}}{m_{i} F_{4}}=\frac{\Delta Q_{4}}{F_{4}}=V_{i}$
\Rightarrow The input charges Q_{5} and Q_{6} also remain the same.

- The scaling by m_{i} ake all qutput voltages unchanged. (Only* After voltage scaling, all capacitors are the charges in the scaled branches multiplied by m_{i}.) scaled to minimum values in order to save \Rightarrow Effective in reducing the capacitor spread and the total capacitance in SCFs.
\qquad
$\mathrm{C}_{\mathrm{i}}, \min ^{2}$ among all capacitors contained in these four branches located.

If $\frac{C_{\min }}{\min \left\{C_{i, 1}, \ldots, C_{i, n}, C_{r}\right\}} \equiv m_{j}$, then $C_{i, 1}, C_{i, 2}, \ldots, C_{i, n}, C_{r}$
\Rightarrow All capacitors contained in these four branches are
multiplied by $m_{i}=\mathrm{C}_{\text {min }} / C_{\mathrm{i}}$, min .

- The smallest capacitance become $\mathrm{C}_{\min }$
and all Op-Amp voltages remain unaffected.
\square Since the thickness of $\mathrm{S}_{\mathrm{i}} \mathrm{O}_{2}$ is 700~5,000 A, typical MOS capacitor $\mathrm{C}=$ $0.25 \sim 0.5 \mathrm{fF} / \mathrm{um}^{2}$. Typical capacitor spread is Cmin/Cmax $=20 \sim 40$ for SC circuits.
-Square type unit capacitor C_{u} in $\mathrm{SCF} \Rightarrow$ for the same area-perimeter ratio.
-common-centroid layout. \Rightarrow Low sensitivity to the oxide thickness gradient.
DNon-unit-sized capacitor : 1~2 C_{u}.
-The overall capacitors connected to Op Amp's output is the loading capacitor CL of Op Amp spec. \Rightarrow remember to define the CL in Op carefully before Op Amp design.

SWITCAP II Simulator

2010/5/3

- Faster and very accurate Simulated by SWITCAP II for Filter specification checking include:
- The frequency-domain and time-domain analysis in addition to Sampler and Hold effects.
- The finite Gain and Bandwidth effects in Op Amp, and finite Ron resistance in SWITCH.
- The dynamical capacitor scaling in each op amp output, and minimum capacitor scaling in each virtual GND.
- Noise and Capacitor sensitivity Analysis.
- SC Filter simulation is according to the capacitor's ratio and sampling frequency Fs in frequency domain and time domain. \Leftarrow unit capacitor is relative (not absolute) numerical, such as : $\mathrm{Cu}=1.0$ (5 um $\times 5$ um ~10 um $\times 10$ um).

| VCO Circuits Layout
 and HSPICE Simulation Results |
| :---: | :---: |
| 201058 |

Design and Layout of SC Circuits

2010/5/3

- Check LP, BP and HP Filter band edge, Sampling frequency about: signal magnitude's S/H effect and frequency-axis prewarping.
- Design by Cascade approach (directly in Z-domain) or Ladder approach (analog s-domain)?
- Check the Filter spec. (order, pass- and stop-band ripple, phase, transition band, ..) about filter type of Butterworth, Chebyshev, Elliptic,..from CAD (MATLAB, Filter solution,..) for $\mathrm{H}(\mathrm{z})$ [biquadratic structure] or H(s) [RLC-ladder structure].
- Realize the SC (Fully Differential) circuits from digital H(z) or analog $\mathrm{H}(\mathrm{s})$.
- Simulate the SC circuits by SWITCAP II and check the dynamic scaling for these capacitors around each Op amp's output and minimum capacitor scaling for these capacitors around each Op amp's input.
- Check the Capacitor's spread and unit capacitor.
- Check Op Amp design to meet the required Gain and Bandwidth.
- Overall SC circuits Layout and post-simulation.

- This a standard and important strategy, especially in lowvoltage processes.
- A new degree of freedom :
$=>$ The single-ended circuits: A positive gain with output delayed $Z^{1 / 2}$ (numerator).
=> The differential circuits: The sign of gain may be chosen arbitrarily by interchanging input or output terminals

$$
\begin{aligned}
& V_{\text {out }}^{+}=-V_{\text {out }}^{-}=A_{v}\left(V_{\text {in }}^{+}-V_{\text {in }}^{-}\right) \\
& H_{1}(z)=\left(V_{\text {out }}^{+}-V_{\text {out }}^{-}\right) /\left(V_{\text {in }}^{+}-V_{\text {in }}^{-}\right) \\
& =-\frac{C_{1}}{C_{2}} \frac{Z^{1 / 2}}{\left(Z^{1 / 2}-Z^{-1 / 2}\right)} \\
& H_{2}(z)=-\frac{C_{1}}{C_{2}} \frac{Z^{-1 / 2}}{\left(Z^{1 / 2}-Z^{-1 / 2}\right)} \\
& \text { Phase-2 output } \\
& \text { Phase-1 output }
\end{aligned}
$$

Distortion Cancellation in Differential-SC Integrators

2010513 Ram-li Liut

Fig. 10.17 Demonstrating that even-order distortion terms cancel in fully differential circuits if the distortion is symmetrical around the common-mode voltage. Here, the common-mode voltage is assumed to be zero.
-The signals are the difference between two voltages in symmetrical circuits of common-mode type.
aNoise as a common-mode signal and does not affect the signal.
םOnly very small odd-order distortion terms. \Rightarrow Better CMRR and PSRR. םBetter noise rejection (Against offset and charge injection).

- Better frequency response and Slew Rate (SR).

- Noninverting integrator

$$
H(z) \equiv \frac{V O(z)}{V i(z)}=\left(\frac{C g}{C i}\right) \frac{z^{-1}}{1-z^{-1}}
$$

- Inverting integrator

$$
H(z) \equiv \frac{V O(z)}{V i(z)}=-\left(\frac{C g}{C i}\right) \frac{1}{1-z^{-1}}
$$

-Symmetrically Balanced and More components (switches, capacitors and OP Amps).
-Thermal noise increases due to the added components and switching operations.
-Need common-mode feedback or common-mode bias circuits.

Filter output for 1-V differential input: (a) 500 Hz and (b) 2 kHz .

Switched Capacitor Circuits Design

2010/5/3
Reterence :

1. Design of Analog CMOS Integrated Circuits- Behzad Razavi, 2001.- Chap. 12, pp. 405-447.
2. Switched-Capacitor Filters-Theory, Analysis and Design- P.V.Ananda Mohan, V. Ramachandran, M. N. S. Swamy, 1995.
3. Analog Integrated Circuit Design- David A. Johns and Ken Martin, 1997, Chap. 10, pp. 394-444.
4. Design of Analog integrated Circuits and Systems- K. R. Laker and W. M. C. Sansen, 1994. Chap. 8, pp. 758-889.
5.MOS Switched-Capacitor and Continuous-Time Integrated Circuits and Systems- R. Unbehauen and A. Cichocki, 1991., Chap. 3, 4 and 5, pp. 172-444. 6.
5. Analog MOS Integrated Circuits for Signal Processing- R. Gregorian, Gabor C. Temes 1985. Chap. 5, "Switched-Capacitor Filters", pp. 265-410.
7 Design of Analog-Digital VLSI Circuits for Telecommunications and Signal Processing- 2nd Ed. J. E. Franca and Yannis Tsividis, 1994., Chap. 7, pp. 213-249. Chap. 8, pp. 251-288.
6. IEEE Press, Analog MOS Integrated Circuits II, part 1.2, pp. 159-274, 1988.

9_IFFF Proceeding "Switched-Canacitor Filters". nn_926-1005_1983

[^0]: 參考 Project Report -5MHz CMOS Sallen-Key Low Pass Filter Circuits for DVB-H

