
Mini Project 1

Ordinary Differential Equations

In this project we shall use the Newton Shooting method to solve ODE. We will be looking

at ODE that have boundary conditions at both ends, making them a boundary value problem.

It will be assumed that students have a working code to solve initial value ODE problems using

the Euler method, and that they can output values to a file and plot results.

The aim of the project is to use OO programming to write generic code that can solve

a given boundary value problem. We shall use concepts such as encapsulation, inheritance,

polymorphism. Other techniques developed here will include using a layered approach to make

use of a standard template, and making a protocol class.

1.1 Solving ODE Boundary Value Problems

1.1.1 The initial value problems for ODEs

The initial value problem solves an ordinary differential equations of the type

dy

dx
= f(x, y), a ≤ x ≤ b,

subject to an initial condition

y(a) = α.

Any higher order ODE may reduced to a set of first order ODEs. As such the general system

may be written
dY

dx
= F (x,Y ), a ≤ x ≤ b, (1.1)

where

Y = (y1(x), y2(x), ..., yn(x))T ,

F = (f1(x,Y ), f2(x,Y ), ..., fn(x,Y ))T ,
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with initial data

Y (a) = α, (1.2)

α = (α1, α2, ..., αn)T .

1.1.2 Boundary Value Problems

All ODEs and PDEs require boundary conditions in order that a solution may exist. In initial

value problems, the boundary conditions are all on one side, but this is not the case for every

problem, for instance take the following:

d2y

dx2
+ κ

dy

dx
+ xy = 0, (1.3)

with the boundary conditions

y(0) = 0, y(1) = 1. (1.4)

Clearly we now have a problem with conditions at both ends. However we do not want to

abandon all the methods for solving initial value problems, some of which are extremely accurate

and efficient. So how can we match conditions at both ends?

First let us rewrite the problem above as a system of first order ODEs

Y1 = y(x); (1.5)

Y2 =
dy

dx
; (1.6)

dY1
dx

= Y2; (1.7)

dY2
dx

= −κY2 − xY1. (1.8)

so that the boundary conditions are now written:

Y1(x = 0) = 0 Y1(x = 1) = 1.

In order to solve the problem by marching through x we need to assign a value to Y2(x = 0).

But how to choose a value of Y2? Well we know that our choice must satisfy the boundary

condition at x = 1. The Newton shooting method gives us an iterative algorithm to find the

perfect guess.

1.1.3 Taking a guess

Let us start by making a guess, g, to Y2(0) so that the initial conditions now become

Y (0) =

(
Y1(0)

Y2(0)

)
=

(
0

g

)
.

Then we may solve (1.7) and (1.8) with these initial conditions using your favourite method, to

get a solution at x = 1

Y (1) =

(
Y1(1)

Y2(1)

)
=

(
β1

β2

)
.
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It is now possible by comparing the value β1 to our boundary condition, to see how good our

guess at the initial condition was.

In order to make our guess better, we want to know whether we have shot above or below.

Let us define the amount by which we have shot above or below the boundary condition as

φ(g) = Y1(x = 1; g)− Y BC
1 (x = 1) = β1 − 1, (1.9)

where β1 is our solution and 1 is the required boundary condition. Since φ is just a function of

g (remember g = Y2(x = 0)) and the boundary condition is satisfied when φ = 0, the problem

reduces to the classic root finding problem. We should already know of an algorithm to solve

this problem - Newton’s root finding algorithm. We also know that this method has quadratic

convergence and is easy to implement.

1.1.4 Newtons shooting method

Newtons shooting method combines the root finding algorithm with an initial value ODE solver

to calculate the solution to boundary value problems. After starting with some initial guess at

the initial condition, the formula to find a new guess may be written as

gn+1 = gn −
φ(g)

φ′(g)
.

We have demonstrated above that once a guess at the initial condition has been made, it is

possible to generate the function φ(g). But we still need to know what φ′(g) is. If we differentiate

(1.9) with respect to g, we get
dφ

dg
=
dY1
dg

∣∣∣∣
x=1

(1.10)

So one method would be to differentiate the original ODE with respect to g to get a new initial

value problem for φ′.

Consider that ODE (1.3) may be written as:

y′′ = −κy′ − xy, (1.11)

y′′ = F (x, y, y′) (1.12)

We can differentiate (1.3) with respect to the guess g, using the chain rule

dy′′

dg
=
∂F

∂x

dx

dg
+
∂F

∂y

dy

dg
+
∂F

∂y′
dy′

dg
. (1.13)

Now define Z1 = dy
dg , and Z2 = dy′

dg , then the set of first order ODEs and initial conditions

satisfied by Z1 and Z2 are

dZ1

dx
= Z2 (1.14)

dZ2

dx
= −κZ2 − xZ1, (1.15)
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and

Z1(x = 0) =
d

dg
Y1(x = 0) = 0 (1.16)

Z2(x = 0) =
d

dg
Y2(x = 0) = 1. (1.17)

Then we may recover φ′ from the solution to initial value problem for Z since

φ′(g) =
dY1
dg

∣∣∣∣
x=1

= Z1(x = 1)

1.2 Coding, Examples and Exercises

1.2.1 Creating a Math vector from the standard library

Here we shall use the standard vector class to create a new vector class so that we can add

them, and multiply them by scalars. Putting extra work into making this class will enable our

integrator methods to be written as we would write them in maths.

Copy the following class definition for the new class MV ector into a header file or at the

top of your main code.

// c l a s s MVector con ta ins arrays t ha t can work wi th doub l e s

class MVector

{
// s t o rage f o r the new vec t o r c l a s s

vector<double> v ;

public :

// cons t ruc t o r

expl ic it MVector ( ){}
expl ic it MVector ( int n ) : v (n){}
expl ic it MVector ( int n , double x ) : v (n , x ){}
// equate v e c t o r s ;

MVector& operator=(const MVector& X)

{ i f (&X==this ) return ∗ this ; v=X. v ; return ∗ this ;}
// acces s data in vec t o r

double& operator [ ] ( int index ){ return v [ index ] ; }
// acces s data in vec t o r ( cons t )

double operator [ ] ( int index ) const {return v [ index ] ; }
// s i z e o f v e c t o r

int s i z e ( ) const {return v . s i z e ( ) ; }
} ; // end c l a s s MVector

So far so good. The class MV ector will act in exactly the same way as a std :: vector, except

that we do not have access to all the public functions of the std :: vector, and we have explicitly

chosen the data double as the data type stored in the array.

Now for this to be of any use we must overload the operators +-/* to work with our new

MV ector class. We shall place the function definition outside the class definition but inside

the header file. A typical definition will look like
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// s c a l a r mult v e c t o r

MVector operator ∗( const double& lhs , const MVector& rhs ) ;

and the implementation can be placed in a different file

MVector operator ∗( const double& lhs , const MVector& rhs )

{
MVector temp ( rhs ) ;

for ( int i =0; i<temp . s i z e ( ) ; i++)temp [ i ]∗= l h s ;

return temp ;

}

Tasks:

1. There are five operators we need. Remember that we can multiply/divide vector by a

scalar, add/subtract vectors, but can’t add/subtract a scalar to a vector. What are the

five operators that we need?

2. Write the function definitions and implementations into your code.

3. Check that the code is working by evaluating the following using MV ectors to represent

u, v, w and x:

u = 4.7v + 1.3w − 6.7x

where v = (0.1, 4.8, 3.7), w = (3.1, 8.5, 3.6) and x = (5.8, 7.4, 12.4).

4. Try other combinations additions/multiplications and see what happens. What happens

when you try to add a double to a vector? What happens if you try again but remove the

explicit keyword from the constructors?

5. When adding two vectors check they conform and exit with an error if they do not.

6. You could also try overloading the<< operator to output a vector in the form (v[0], v[1], ..., v[n]):

ostream& operator<<(ostream& os , const MVector& v ) {
// Overload the << opera tor to output MVectors to screen or f i l e

int n = v . s i z e ( ) ;

cout << ” ( ” ;

for ( int i =0; i<n ; i++) {
os << v [ i ] ;

i f ( i<n−1) cout << ” , ” ;

}
cout << ” ) ” ;

return os ;

}

7. Think about error checking. What happens if the vectors we try to add are not the same

size?

5



1.2.2 Protocol for ODE function

In this section we develop a protocol for the function F (x,Y ) from (1.1) using pure virtual

functions. The class MFunction will basically be a definition of the function used to provide an

interface. The class is defined entirely as follows:

struct MFunction {
virtual MVector operator ( ) ( const double& x ,

const MVector& y ) =0;

} ;

• This is the C++ replacement for function pointers.

• A struct is a class where all members are public.

• The definition of operator() is a pure virtual definition, because of the syntax “=0” at

the end of the line.

• We can only inherit from classes with pure virtual functions, not declare them since they

have no implementation.

Example:

Use inheritance to generate a new class that implements the following

F (x,Y ) =

(
Y1 + xY2

xY1 − Y2

)
,

and evaluate the following

v = F (2,Y )

where

Y =

(
1.4

−5.7

)
,

Solution:

The function class is written as:

class TestFunction : public MFunction

{
public :

// func t i on

MVector operator ( ) ( const double& x , const MVector& y )

{
MVector temp ( 2 ) ;

temp [ 0 ] = y [ 0 ] + x∗y [ 1 ] ;

temp [ 1 ] = x∗y [ 0 ] − y [ 1 ] ;

return temp ;

}
} ;
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In the main function we have (assuming that << has been overloaded)

MVector v , y ( 2 ) ; // i n i t i a l i s e y wi th 2 e lements

TestFunction f ; // f has order 2 by d e f i n i t i o n

y [ 0 ] = 1 . 4 ; y [1 ]=−5.7 ; // as s i gn element va l u e s in y

v = f ( 2 . , y ) ; // e va l ua t e f un t i on f as r e qu i r ed

std : : cout << ” v : : ” << v << ” y : : ” << y << ”\n” ;

and the output is

v : : ( −10 , 8 . 5 ) y : : ( 1 . 4 , −5.7 )

Tasks:

1. Copy the program above and get it to compile and run - if you have not overloaded <<

you will have to output v and y element by element.

2. Declare another MV ector u with 2 elements and set them to 1 and 2 respectively. Now

let v be defined by the expression

v = u+ F (2,Y ).

Can this be written as seen (i.e v = u + f(2.,y)). Calculate the result by hand to check

your code.

3. Now declare doubles h = 0.1, and x = 0.5, and evaluate

v = u+ hF (x,u+ hY ).

Again try to write this in one line of code. Calculate the result by hand to check your

code.

1.2.3 ODE solver function

Below is the declaration of a function that can be used to solve ODEs. In order to solve an

initial value ODE problem we need to know the initial conditions, the start point in x, the

number of steps, and the function f(x, y) for which we are solving. On entry the arguments to

this function contain all of those elements, and on return the solution can be stored inside the

vector y. In this section you must complete the definition of this function.

// De f i n i t i on o f an eu l e r scheme ODE so l v e r f unc t i on

int e u l e r S o l v e ( int s teps , double a , double b , MVector &y , MFunction &f ) ;

On entry to the function

• steps :- number of steps in the problem

• a :- initial value of x

• b :- final value of x
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• y :- the initial value of y(x = a)

• f :- the function defining the problem we are solving

On exit from the function:

• y :- the solution y(x = b)

• return value :- integer that can give information about any errors that have occurred.

Tasks:

1. Write the declaration for this function and an empty definition.

2. Now fill in the definition of the function. This piece of code should carry out the following

algorithm:

(a) Declare and initialise the value of x.

(b) Declare and calculate the step size h.

(c) loop over the number of steps and update x and Y according to the algorithm

xi =a+ ih.

Y i+1 =Y i + hF (xi,Y i),

for i = 0, 1, . . . , steps− 1.

3. Write a new function inheriting MFunction to evaluate the following

F (x,Y ) =

(
x

Y2

)
.

Then use the function eulerSolve to solve the initial value problem

dY

dx
= F (x,Y ), with Y (x = 0) =

(
0

1

)
,

on the interval x ∈ [0, 1]. The exact solution is

Y (x = 1) =

(
0.5

e

)
.

Create a table containing your values of Y1(x = 1) and Y2(x = 1) for different numbers of

steps from n = 10 up to n = 100 in steps of ten.

4. Next write functions to solve the ODE using the midpoint method and 4th order Runge-

Kutta method.

(a) Use the previous example as a template for your declaration and definition
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(b) The midpoint method is given by the recurrence relation

xi =a+ ih,

Y i+1 =Y i + hF
(
xi + 1

2h,Yi + 1
2hF (xi,Yi)

)
.

for i = 0, 1, . . . , steps− 1.

(c) and the 4th order Runge-Kutta integrator method may be expressed as

xi = a+ ih,

k1 = hF (xi,Y i), k2 = hF (xi +
h

2
,Y i +

k1
2

),

k3 = hF (xi +
h

2
,Y i +

k2
2

), k4 = hF (xi + h,Y i + k3),

Y i+1 = Y i +
1

6
[k1 + 2k2 + 2k3 + k4],

for i = 0, 1, . . . , steps− 1.

5. Test the methods against each other on the test problem.

6. Now consider the following ODE;

d2y

dx2
=

1

8

(
32 + 2x3 − y dy

dx

)
, (1.18)

on the interval x ∈ [1, 3]with the initial conditions

y(x = 1) = 17, y′(x = 1) = 1.

(a) Write the ODE as a system of first order ODEs. (Hint: Write Y1 = y and Y2 = y′.)

(b) Derive the function F , and write a new function (which inherits ODEFunction) to

represent it.

7. Think about error checking in your code. What happens if the size of y and f are different?

What can you do?

8. Now include an optional print statement within the solver functions to output values of

Y i, xi for all i to a file.

Report:

• For the ODE stated in (1.18), in your report briefly state the problem, and comment on

the accuracy of the numerical methods on the solution of this equation.

1.2.4 Implementing the Newton shooting method

Example:

Solve the BVP defined in (1.3) and (1.4) with κ = 1.
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Solution:

The function F is given by

class TestFunction : public MFunction

{
double kappa ;

public :

// cons t ruc t o r to i n i t i a l i s e order

TestFunction ( ){ kappa =1.} ;

// func t i on

MVector operator ( ) ( const double& x , const MVector& y )

{
MVector temp ( 4 ) ;

temp [ 0 ] = y [ 1 ] ;

temp [ 1 ] = −kappa∗y [ 1 ] − x∗y [ 0 ] ;

temp [ 2 ] = y [ 3 ] ;

temp [ 3 ] = −kappa∗y [ 3 ] − x∗y [ 2 ] ;

return temp ;

} ;

void setKappa (double k ){ kappa=k ; } ; // change kappa

} ;

and in the main code we have something like

TestFunction f ;

for ( int newton=0;newton<100;newton++)

{
// se tup i n i t i a l c ond i t i on s

y [ 0 ] = 0 ; y [1 ]= guess ; y [ 2 ] = 0 . ; y [ 3 ] = 1 . ;

rungeKuttaSolve ( 1 0 0 , 0 . , 1 . , y , f ) ; // s o l v e

phi = y [ 0 ] − 1 . // check aga in s t BC

phidash = y [ 2 ] ; // phidash = z 1 ( x=1)

i f ( abs ( phi)< t o l )break ; // e x i t i f condtn s a t i s f i e d

guess = guess − phi / phidash ;

}

You will require the cmath library to access the abs function.

Tasks:

Consider now ODE (1.18) with the boundary conditions

y(x = 1) = 17, y(x = 3) =
43

3
.

1. Consider that (1.18) may be written as:

y′′ =
1

8

(
32 + 2x3 − yy′

)
, (1.19)

y′′ = F (x, y, y′) (1.20)
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(a) Differentiate (1.18) with respect to the guess g, using the chain rule.

dy′′

dg
=
∂F

∂x

dx

dg
+
∂F

∂y

dy

dg
+
∂F

∂y′
dy′

dg
. (1.21)

(Hint: dx
dg = 0)

(b) Let us set z = dy
dg , then write down the set of first order ODEs and initial conditions

satisfied by z.
d

dx
z = f(x,y, z)

(c) Alter your code so as to solve for z and y simultaneously. (Hint: You now have a 4

element system as in the example.)

(d) Alter your code to iterate toward the correct solution, using the Newton method,

given by

gn+1 = gn −
φ(gn)

φ′(gn)
, φ′(gn) = z(3; gn).

2. Check your code against the exact solution, y(x) = x2 + 16
x and y′(x = 1) = −14.

3. Think about error checking. What happens if we reach the end of the loop and a solution

has not been found? What information can you give back to the user?

Marks will be awarded for clarity and correctness of code as well as answers to the questions

and discussion.
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