Mini Project 1

Ordinary Differential Equations

In this project we shall use the Newton Shooting method to solve ODE. We will be looking
at ODE that have boundary conditions at both ends, making them a boundary value problem.
It will be assumed that students have a working code to solve initial value ODE problems using
the Euler method, and that they can output values to a file and plot results.

The aim of the project is to use OO programming to write generic code that can solve
a given boundary value problem. We shall use concepts such as encapsulation, inheritance,
polymorphism. Other techniques developed here will include using a layered approach to make

use of a standard template, and making a protocol class.

1.1 Solving ODE Boundary Value Problems

1.1.1 The initial value problems for ODEs
The initial value problem solves an ordinary differential equations of the type

d
ﬁZf(%y), a<x<b,

subject to an initial condition
y(a) = o

Any higher order ODE may reduced to a set of first order ODEs. As such the general system

may be written
Yy

= F(z,Y), a<az<b, (1.1)

where

Y = (y1(3?)7y2(95)a "'7yn<m))T7
F = (fl(x,Y),fg(l’,Y),...,fn(x,Y))T,



with initial data

Y(a) = a, (1.2)

1.1.2 Boundary Value Problems

All ODEs and PDEs require boundary conditions in order that a solution may exist. In initial
value problems, the boundary conditions are all on one side, but this is not the case for every

problem, for instance take the following:

dy  dy
29 = = 1.3
de—l-/idx—i—xy 0, (1.3)
with the boundary conditions
y(0)=0, y(1)=1. (1.4)

Clearly we now have a problem with conditions at both ends. However we do not want to
abandon all the methods for solving initial value problems, some of which are extremely accurate
and efficient. So how can we match conditions at both ends?

First let us rewrite the problem above as a system of first order ODEs

V1 = y(a); (1.5)
Y=, (1.6)
My (1.7)
% = —KYs — aV]. (1.8)

so that the boundary conditions are now written:

In order to solve the problem by marching through x we need to assign a value to Ya(z = 0).
But how to choose a value of Y57 Well we know that our choice must satisfy the boundary
condition at x = 1. The Newton shooting method gives us an iterative algorithm to find the
perfect guess.
1.1.3 Taking a guess
Let us start by making a guess, g, to Y2(0) so that the initial conditions now become

Y1(0 0

Y (0) = 10 _ .
Y>(0) g

Then we may solve (1.7) and (1.8) with these initial conditions using your favourite method, to

Y(1) = Yi(1) _ [ B .
Yo(1) B2

2

get a solution at x =1



It is now possible by comparing the value 1 to our boundary condition, to see how good our
guess at the initial condition was.
In order to make our guess better, we want to know whether we have shot above or below.

Let us define the amount by which we have shot above or below the boundary condition as

d(g) =Yi(z=1;9) — Yz =1) =1 — 1, (1.9)

where 37 is our solution and 1 is the required boundary condition. Since ¢ is just a function of
g (remember g = Y3(z = 0)) and the boundary condition is satisfied when ¢ = 0, the problem
reduces to the classic root finding problem. We should already know of an algorithm to solve
this problem - Newton’s root finding algorithm. We also know that this method has quadratic

convergence and is easy to implement.

1.1.4 Newtons shooting method

Newtons shooting method combines the root finding algorithm with an initial value ODE solver
to calculate the solution to boundary value problems. After starting with some initial guess at
the initial condition, the formula to find a new guess may be written as

o 9(9)
AT

We have demonstrated above that once a guess at the initial condition has been made, it is
possible to generate the function ¢(g). But we still need to know what ¢'(g) is. If we differentiate

(1.9) with respect to g, we get
d dY;
¢ _ dn (1.10)
dg dg |,
So one method would be to differentiate the original ODE with respect to g to get a new initial
value problem for ¢'.

Consider that ODE (1.3) may be written as:

n_

y' = —ry' — xy, (1.11)
y' = F(z,y,9) (1.12)

We can differentiate (1.3) with respect to the guess g, using the chain rule

d' _0Fdz OFdy OFdy (1.13)
dg Oxdg Oydg Oy dg '

Now define Z; = %, and Zo = %’, then the set of first order ODEs and initial conditions

satisfied by Z; and Zs are

dZy
— =7 1.14
o =22 (1.14)
dz
—d; = —KZy — x4y, (1.15)



and

Zi(z = 0) :qul(x:()) — 0 (1.16)
Zo(x =0) = ngg(a:—O)— 1. (1.17)

Then we may recover ¢’ from the solution to initial value problem for Z since

dY;
¢'(9) = ——
dg r=1

1.2 Coding, Examples and Exercises

1.2.1 Creating a Math vector from the standard library

Here we shall use the standard vector class to create a new vector class so that we can add
them, and multiply them by scalars. Putting extra work into making this class will enable our
integrator methods to be written as we would write them in maths.

Copy the following class definition for the new class MVector into a header file or at the

top of your main code.

// class MVector contains arrays that can work with doubles
class MVector
{
// storage for the new vector class
vector <double> v;
public:
// constructor
explicit MVector(){}
explicit MVector(int n):v(n){}
explicit MVector(int n,double x):v(n,x){}
// equate wvectors;
MVector& operator=(const MVector& X)
{if (&X=this)return *xthis;v=X.v;return xthis;}
// access data in wvector
double& operator [](int index){return v[index];}
// access data in wvector (const)
double operator [](int index) const {return v[index];}
// size of wector
int size() const {return v.size();}
Y; // end class MVector

So far so good. The class M Vector will act in exactly the same way as a std :: vector, except
that we do not have access to all the public functions of the std :: vector, and we have explicitly
chosen the data double as the data type stored in the array.

Now for this to be of any use we must overload the operators +-/* to work with our new
MVector class. We shall place the function definition outside the class definition but inside

the header file. A typical definition will look like
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// scalar mult vector
MVector operatorx(const double& lhs,const MVector& rhs);

and the implementation can be placed in a different file

MVector operatorx(const double& lhs,const MVector& rhs)

{

MVector temp(rhs);
for (int i=0;i<temp.size ();i++)temp[i]*=1hs;
return temp;

}

Tasks:

1. There are five operators we need. Remember that we can multiply/divide vector by a
scalar, add/subtract vectors, but can’t add/subtract a scalar to a vector. What are the

five operators that we need?
2. Write the function definitions and implementations into your code.

3. Check that the code is working by evaluating the following using M Vectors to represent
u, v, w and x:

u=47v+ 13w —6.Tx

where v = (0.1,4.8,3.7), w = (3.1,8.5,3.6) and = = (5.8,7.4,12.4).

4. Try other combinations additions/multiplications and see what happens. What happens
when you try to add a double to a vector? What happens if you try again but remove the

explicit keyword from the constructors?
5. When adding two vectors check they conform and exit with an error if they do not.

6. You could also try overloading the << operator to output a vector in the form (v[0], v[1], ..., v[n]):

ostream& operator<<(ostream& os, const MVector& v) {
// Owerload the << operator to output MVectors to screen or file
int n = v.size ();
cout << 7 (7
for (int i=0; i<n; i++) {
os << v[il];
if(i<n—1) cout << 7.,7;
}
cout << 7)7;

return os;

7. Think about error checking. What happens if the vectors we try to add are not the same

size?



1.2.2 Protocol for ODE function

In this section we develop a protocol for the function F(z,Y) from (1.1) using pure virtual
functions. The class MFunction will basically be a definition of the function used to provide an

interface. The class is defined entirely as follows:

struct MFunction {
virtual MVector operator ()(const double& x,
const MVector& y) =0;

b
e This is the C++ replacement for function pointers.
e A struct is a class where all members are public.
e The definition of operator() is a pure virtual definition, because of the syntax “=0” at
the end of the line.
e We can only inherit from classes with pure virtual functions, not declare them since they
have no implementation.
Example:

Use inheritance to generate a new class that implements the following

Y1+xY2>

F(z,Y) = ( Y- Yy

and evaluate the following
v=F(2)Y)

where

Solution:

The function class is written as:

class TestFunction: public MFunction

{
public:
// function
MVector operator () (const double& x,const MVector& y)
{
MVector temp (2);
temp[0] = y[0] + xxy[1];
temp [1] = xxy[0] — y[1];
return temp;
}
b




In the main function we have (assuming that << has been overloaded)

MVector v,y (2); // initialise y with 2 elements
TestFunction f; // f has order 2 by definition
y[0]=1.4;y[1]==5.7; // assign element values in y

v =1(2.,y); // evaluate funtion [ as required
std:icout << 7oveiil) <K v << Tyl <<y << "\n”;

and the output is

v :: (=10 , 85 )y :: (1.4 , =5.7)

Tasks:

1. Copy the program above and get it to compile and run - if you have not overloaded <<

you will have to output v and y element by element.

2. Declare another MVector u with 2 elements and set them to 1 and 2 respectively. Now

let v be defined by the expression
v=u+F(2)Y).

Can this be written as seen (i.ev = u + £(2.,y)). Calculate the result by hand to check

your code.

3. Now declare doubles h = 0.1, and z = 0.5, and evaluate
v=u+hF(z,u+hY).

Again try to write this in one line of code. Calculate the result by hand to check your

code.

1.2.3 ODE solver function

Below is the declaration of a function that can be used to solve ODEs. In order to solve an
initial value ODE problem we need to know the initial conditions, the start point in x, the
number of steps, and the function f(z,y) for which we are solving. On entry the arguments to
this function contain all of those elements, and on return the solution can be stored inside the

vector y. In this section you must complete the definition of this function.

// Definition of an euler scheme ODE solver function
int eulerSolve(int steps,double a,double b,MVector &y, MFunction &f);

On entry to the function
e steps - number of steps in the problem
e ¢ :- initial value of z

e b - final value of =



e y :- the initial value of y(z = a)

e f :- the function defining the problem we are solving
On exit from the function:

e y :- the solution y(z = b)

e return value :- integer that can give information about any errors that have occurred.

Tasks:

1. Write the declaration for this function and an empty definition.

2. Now fill in the definition of the function. This piece of code should carry out the following

algorithm:

(a) Declare and initialise the value of x.
(b) Declare and calculate the step size h.

(¢) loop over the number of steps and update x and Y according to the algorithm

x; =a + th.
Y1 =Y +hF(2;,Y5),

fori=0,1,...,steps — 1.

3. Write a new function inheriting M Function to evaluate the following

F(m,Y):<£).

Then use the function eulerSolve to solve the initial value problem
ay _
dr

F(z,Y), with Y(z=0)— < (1’ ) ,

on the interval z € [0,1]. The exact solution is

Create a table containing your values of Yj(x = 1) and Ya(x = 1) for different numbers of

steps from n = 10 up to n = 100 in steps of ten.

4. Next write functions to solve the ODE using the midpoint method and 4th order Runge-
Kutta method.

(a) Use the previous example as a template for your declaration and definition
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(b) The midpoint method is given by the recurrence relation

r; =a + ih,
Yiy1 =Y, +hF (z;+ 5h,Y; + $hF(2;,Y;)) .
fori=0,1,...,steps — 1.

(c¢) and the 4th order Runge-Kutta integrator method may be expressed as

x; = a+ ih,

h k
klth(a:i,Yi), kQIhF(xZ+§7Yl+71)’

2
h ks
k3 = hF(z; + §,Yi+ 7), ki=hF(z;+h,Y; + k3),
1
Y=Y+ g[lﬁ + 2ko + 2ks3 + k4],
fori=0,1,...,steps — 1.

. Test the methods against each other on the test problem.

. Now consider the following ODE;

Py 1 3 dy
CY _ 139498, 1.1
dz? 8 <3 e ydx) ’ (1.18)

on the interval = € [1, 3]with the initial conditions
ylx =1) =17, y(x=1)=1.

(a) Write the ODE as a system of first order ODEs. (Hint: Write Y7 =y and Y2 = ¢/.)

(b) Derive the function F', and write a new function (which inherits ODEFunction) to

represent it.

. Think about error checking in your code. What happens if the size of y and f are different?
What can you do?

. Now include an optional print statement within the solver functions to output values of
Y, z; for all i to a file.

Report:

e For the ODE stated in (1.18), in your report briefly state the problem, and comment on

the accuracy of the numerical methods on the solution of this equation.

1.2.4 Implementing the Newton shooting method

Example:

Solve the BVP defined in (1.3) and (1.4) with k = 1.
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Solution:

The function F' is given by

class TestFunction: public MFunction
{
double kappa;
public:
// constructor to initialise order
TestFunction (){kappa=1.};

// function
MVector operator ()(const double& x,const MVector& y)

{
MVector temp (4);
temp [0] = y[1];
temp [1] = —kappaxy[1] — xx*xy[0];
temp [2] = y[3];
temp [3] = —kappaxy[3] — xxy[2];

return temp;
IS
void setKappa(double k){kappa=k;}; // change kappa

}s

and in the main code we have something like

TestFunction f;
for (int newton=0;newton <100;newton++)
{
// setup initial conditions
y[0]=0;y[1]=guess;y[2]=0.;y[3]=1;
rungeKuttaSolve (100,0.,1.,y,f); // solve
phi = y[0] — 1. // check against BC
phidash = y[2]; // phidash = z_1(z=1)
if (abs(phi)<tol)break; // ezit if condtn satisfied
guess = guess — phi/phidash;

You will require the cmath library to access the abs function.

Tasks:

Consider now ODE (1.18) with the boundary conditions

43
ylx =1) =17, ylx =3) = 3
1. Consider that (1.18) may be written as:
1
Y = 3 (32 4 22° — yy'), (1.19)
y'=F(z,y,9) (1.20)
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(a) Differentiate (1.18) with respect to the guess g, using the chain rule.

A _oFde oFdy o dy .
dg Oxdg Oydg Oy dg '

(Hint: 4 = 0)

(b) Let us set z = %, then write down the set of first order ODEs and initial conditions

satisfied by z.
d
%Z = .f(xa Y, Z)
(c¢) Alter your code so as to solve for z and y simultaneously. (Hint: You now have a 4

element system as in the example.)

(d) Alter your code to iterate toward the correct solution, using the Newton method,

given by

b1 = G — ;’({;z & (gn) = 2(3 9n).

2. Check your code against the exact solution, y(z) = 22 + 1;6 and y/'(x = 1) = —14.

3. Think about error checking. What happens if we reach the end of the loop and a solution

has not been found? What information can you give back to the user?

Marks will be awarded for clarity and correctness of code as well as answers to the questions

and discussion.
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Is AIDS an Invariably
Fatal Disease?

by Ivan Kramer

This essay will address and answer the question: Is the acquired immunodeficienc
, syndrome (AIDS), which is the end stage of the human immunodeficiency virus
¢ (HIV) infection, an invariably fatal disease?

Like other viruses, HIV has no metabolism and cannot reproduce itself outside of
a living cell. The genetic information of the virus is contained in two identical strands
of RNA. To reproduce, HIV must use the reproductive apparatus of the cell it invades
= and infects to produce exact copies of the viral RNA. Once it penetrates a cell, HIV
transcribes its RNA into DNA using an enzyme (reverse transcriptase) contained in the

‘% virus. The double-stranded viral DNA migrates into the nucleus of the invaded cell and

is inserted into the cell’s genome with the aid of another viral enzyme (integrase). The
viral DNA and the invaded cell’s DNA are then integrated, and the cell is infected.
When the infected cell is stimulated to reproduce, the proviral DNA is transcribed into
viral DNA, and new viral particles are synthesized. Since anti-retroviral drugs like zi-
dovudine inhibit the HIV enzyme reverse transcriptase and stop proviral DNA chain
synthesis in the laboratory, these drugs, usually administered in combination, slow
down the progression to AIDS in those that are infected with HIV (hosts).

What makes HIV infection so dangerous is the fact that it fatally weakens a
host’s immune system by binding to the CD4 molecule on the surface of cells vital
for defense against disease, including T-helper cells and a subpopulation of natural
killer cells. T-helper cells (CD4 T-cells, or T4 cells) are arguably the most important
cells of the immune system since they organize the body’s defense against antigens.
Modeling suggests that HIV infection of natural killer cells makes it impossible for
even modern antiretroviral therapy to clear the virus [1]. In addition to the CD4
molecule, a virion needs at least one of a handful of co-receptor molecules (e.g., CCRS
and CXCR4) on the surface of the target cell in order to be able to bind to it, pene-
trate its membrane, and infect it. Indeed, about 1% of Caucasians lack coreceptor
molecules, and, therefore, are completely immune to becoming HIV infected.

Once infection is established, the disease enters the acute infection stage, lasting
a matter of weeks, followed by an incubation period, which can last two decades or
more! Although the T-helper cell density of a host changes quasi-statically during the
incubation period, literally billions of infected T4 cells and HIV particles are
destroyed—and replaced—daily. This is clearly a war of attrition, one in which the
immune system invariably loses.

A model analysis of the essential dynamics that occur during the incubation
period to invariably cause AIDS is as follows [1]. Because HIV rapidly mutates, its
ability to infect T4 cells on contact (its infectivity) eventually increases and the
rate T4 cells become infected increases. Thus, the immune system must increase the
destruction rate of infected T4 cells as well as the production rate of new, uninfected
ones to replace them. There comes a point, however, when the production rate of T4
cells reaches its maximum possible limit and any further increase in HIV’s infectiv-
ity must necessarily cause a drop in the T4 density leading to AIDS. Remarkably,
about 5% of hosts show no sign of immune system deterioration for the first ten years
of the infection; these hosts, called long-term nonprogressors, were originally
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thought to be possibly immune to developing AIDS, but modeling evidence suggests
that these hosts will also develop AIDS eventually [1].

In over 95% of hosts, the immune system gradually loses its long battle with the
virus. The T4 cell density in the peripheral blood of hosts begins to drop from normal
levels (between 250 over 2500 cells/mm?) towards zero, signaling the end of the
incubation period. The host reaches the AIDS stage of the infection either when one
of the more than twenty opportunistic infections characteristic of AIDS develops
(clinical AIDS) or when the T4 cell density falls below 250 cells/mm? (an additional
definition of AIDS promulgated by the CDC in 1987). The HIV infection has now
reached its potentially fatal stage.

In order to model survivability with AIDS, the time ¢ at which a host develops
AIDS will be denoted by # = 0. One possible survival model for a cohort of AIDS
patients postulates that AIDS is not a fatal condition for a fraction of the cohort,
denoted by S;, to be called the immortal fraction here. For the remaining part of the
cohort, the probability of dying per unit time at time 7 will be assumed to be a con-
stant k, where, of course, k must be positive. Thus, the survival fraction S(¢) for this
model is a solution of the linear first-order di ferential equation

BO _ s -
~ = ~kIs@) = s (M)

Using the integrating-factor method discussed in Section 2.3, we see that the
solution of equation (1) for the survival fraction is given by

S(t) =S, + [1 — S]e ™. )

Instead of the parameter k appearing in (2), two new parameters can be defined for
a host for whom AIDS is fatal: the average survival time Ty given by Toer = k! and
the survival half-life Ty, given by T, = In(2)/k. The survival half-life, defined as the
time required for half of the cohort to die, is completely analogous to the half-life in
radioactive nuclear decay. See Problem 8 in Exercise 3.1. In terms of these parameters
the entire time-dependence in (2) can be written as

e_kt = e_t/waey = 2—I/T1/2 (3)

Using a least-squares program to fit the survival fraction function in (2) to the
actual survival data for the 159 Marylanders who developed AIDS in 1985 produces
an immortal fraction value of S; = 0.0665 and a survival half life value of Ty, =
0.666 year, with the average survival time being T,ver = 0.960 years [2]. See Figure 1.
Thus only about 10% of Marylanders who developed AIDS in 1985 survived three
years with this condition. The 1985 Maryland AIDS survival curve is virtually iden-
tical to those of 1983 and 1984. The first antiretroviral drug found to be effective
against HIV was zidovudine (formerly known as AZT). Since zidovudine was not
known to have an impact on the HIV infection before 1985 and was not common

[ T T T T T T T T
1.0 *—Jl e Survival fraction data [
o Two-parameter model fit | _|
0.8 +—2
o OI
o
~ 0.6 5
= g
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Survival time #(w)

FIGURE 1 Survival fraction curve S(7).
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therapy before 1987, it is reasonable to conclude that the survival of the 1985
Maryland AIDS patients was not significantly influenced by zidovudine therap .

The small but nonzero value of the immortal fraction S; obtained from the
Maryland data is probably an artifact of the method that Maryland and other states
use to determine the survivability of their citizens. Residents with AIDS who
changed their name and then died or who died abroad would still be counted as alive
by the Maryland Department of Health and Mental Hygiene. Thus, the immortal
fraction value of S; = 0.0665 (6.65%) obtained from the Maryland data is clearly an
upper limit to its true value, which is probably zero.

Detailed data on the survivability of 1,415 zidovudine-treated HIV-infected
hosts whose T4 cell densities dropped below normal values were published by
Easterbrook et al. in 1993 [3]. As their T4 cell densities drop towards zero, these peo-
ple develop clinical AIDS and begin to die. The longest survivors of this disease live
to see their T4 densities fall below 10 cells/mm?. If the time ¢ = 0 is redefined to
mean the moment the T4 cell density of a host falls below 10 cells/mm?, then the
survivability of such hosts was determined by Easterbrook to be 0.470, 0.316, and
0.178 at elapsed times of 1 year, 1.5 years, and 2 years, respectively.

A least-squares fit of the survival fraction function in (2) to the Easterbrook
data for HIV-infected hosts with T4 cell densities in the 0—10 cells/mm? range yields
a value of the immortal fraction of S; = 0 and a survival half-life of 77, = 0.878 year
[4]; equivalently, the average survival time is T,y = 1.27 years. These results clearly
show that zidovudine is not effective in halting replication in all strains of HIV,
since those who receive this drug eventually die at nearly the same rate as those who
do not. In fact, the small difference of 2.5 months between the survival half-life
for 1993 hosts with T4 cell densities below 10 cells/mm? on zidovudine therapy
(T2 = 0.878 year) and that of 1985 infected Marylanders not taking zidovudine
(T2 = 0.666 year) may be entirely due to improved hospitalization and improve-
ments in the treatment of the opportunistic infections associated with AIDS over the
years. Thus, the initial ability of zidovudine to prolong survivability with HIV dis-
ease ultimately wears off, and the infection resumes its progression. Zidovudine
therapy has been estimated to extend the survivability of an HIV-infected patient by
perhaps 5 or 6 months on the average [4].

Finally, putting the above modeling results for both sets of data together, we fin
that the value of the immortal fraction falls somewhere within the range 0 < S; < 0.0665
and the average survival time falls within the range 0.960 years < T,y < 1.27 years.
Thus, the percentage of people for whom AIDS is not a fatal disease is less than 6.65%
and may be zero. These results agree with a 1989 study of hemophilia-associated AIDS
cases in the USA which found that the median length of survival after AIDS diagno-
sis was 11.7 months [5]. A more recent and comprehensive study of hemophiliacs
with clinical AIDS using the model in (2) found that the immortal fraction was S; =
0, and the mean survival times for those between 16 to 69 years of age varied be-
tween 3 to 30 months, depending on the AIDS-defining condition [6]. Although
bone marrow transplants using donor stem cells homozygous for CCRS delta32
deletion may lead to cures, to date clinical results consistently show that AIDS is
an invariably fatal disease.

Related Problems

1. Suppose the fraction of a cohort of AIDS patients that survives a time ¢ after
AIDS diagnosis is given by S(f) = exp(—k7). Show that the average survival
time T,y after AIDS diagnosis for a member of this cohort is given by
Taver = 1/ k.

2. The fraction of a cohort of AIDS patients that survives a time ¢ after AIDS
diagnosis is given by S(r) = exp(—kf). Suppose the mean survival for a cohort
of hemophiliacs diagnosed with AIDS before 1986 was found to be Tyyer = 6.4
months. What fraction of the cohort survived 5 years after AIDS diagnosis?
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3. The fraction of a cohort of AIDS patients that survives a time ¢ after AIDS diag-
nosis is given by S(#) = exp(—kf). The time it takes for S(¢) to reach the value of
0.5 is defined as the survival half-life and denoted by T ».

(a) Show that S(¢) can be written in the form S(r) = 2=/T,
(b) Show that 71/ = Tayer In(2), where Ty, is the average survival time define
in problem (1). Thus, it is always true that 712 < Tayer.

4. About 10% of lung cancer patients are cured of the disease, i.e., they survive
5 years after diagnosis with no evidence that the cancer has returned. Only 14%
of lung cancer patients survive 5 years after diagnosis. Assume that the fraction
of incurable lung cancer patients that survives a time # after diagnosis is given
by exp(—kf). Find an expression for the fraction S(¢) of lung cancer patients that
survive a time ¢ after being diagnosed with the disease. Be sure to determine the
values of all of the constants in your answer. What fraction of lung cancer patients
survives two years with the disease?
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The Allee Effect

by Jo Gascoigne

The top five most famous Belgians apparently include a cyclist, a punk singer, the in-
ventor of the saxophone, the creator of Tintin, and Audrey Hepburn. Pierre Frangois
Verhulst is not on the list, although he should be. He had a fairly short life, dying at
the age of 45, but did manage to include some excitement—he was deported from
Rome for trying to persuade the Pope that the Papal States needed a written constitu-
tion. Perhaps the Pope knew better even then than to take lectures in good gover-
nance from a Belgian. . . .

Aside from this episode, Pierre Verhulst (1804—1849) was a mathematician who

= concerned himself, among other things, with the dynamics of natural populations—

fish, rabbits, buttercups, bacteria, or whatever. (I am prejudiced in favour of fish, so
we will be thinking fish from now on.) Theorizing on the growth of natural popula-
tions had up to this point been relatively limited, although scientists had reached the
obvious conclusion that the growth rate of a population (dN/dt, where N(7) is the
population size at time 7) depended on (i) the birth rate b and (i) the mortality rate m,
both of which would vary in direct proportion to the size of the population N:

dN

— = bN — mN. 1

” Q)
After combining b and m into one parameter r, called the intrinsic rate of natural
increase—or more usually by biologists without the time to get their tongues around
that, just —equation (1) becomes

dN
7 rN. 2
This model of population growth has a problem, which should be clear to you—if
not, plot dN/dt for increasing values of N. It is a straightforward exponential growth
curve, suggesting that we will all eventually be drowning in fish. Clearly, something
eventually has to step in and slow down dN/dt. Pierre Verhulst’s insight was that this
something was the capacity of the environment, in other words,

How many fish can an ecosystem actually suppor ?

He formulated a differential equation for the population N(¢) that included both
r and the carrying capacity K:

dN N

E=FN<1 —%>, r>0. (3)

Equation (3) is called the logistic equation, and it forms to this day the basis of much
of the modern science of population dynamics. Hopefully, it is clear that the term
(1 — N/K), which is Verhulst’s contribution to equation (2), is (I — N/K) = 1 when
N = 0, leading to exponential growth, and (1 — N/K) — 0 as N — K, hence it causes
the growth curve of N(f) to approach the horizontal asymptote N(f) = K. Thus the size
of the population cannot exceed the carrying capacity of the environment.
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The logistic equation (3) gives the overall growth rate of the population, but the
ecology is easier to conceptualize if we consider per capita growth rate—that is, the
growth rate of the population per the number of individuals in the population—some
measure of how “well” each individual in the population is doing. To get per capita
growth rate, we just divide each side of equation (3) by N:

1 dN N r
——=r<l——>=r——N.
N dt K K

This second version of (3) immediately shows (or plot it) that this relationship is a
1d

straight line with a maximum value of Ndr at N = 0 (assuming that negative popu-

lation sizes are not relevant) and dN/dt = 0 at N = K.

1 dN
Er, hang on a minute . . . “a maximum value of N at N = 0?!” Each shark in

the population does best when there are . . . zero sharks? Here is clearly a flaw in the
logistic model. (Note that it is now a model—when it just presents a relationship be-
tween two variables dN/dr and N, it is just an equation. When we use this equation
to try and analyze how populations might work, it becomes a model.)

The assumption behind the logistic model is that as population size decreases, indi-
viduals do better (as measured by the per capita population growth rate). This assump-
tion to some extent underlies all our ideas about sustainable management of natural
resources—a fish population cannot be fished indefinitely unless we assume that when
a population is reduced in size, it has the ability to grow back to where it was before.

This assumption is more or less reasonable for populations, like many fish pop-
ulations subject to commercial fisheries, which are maintained at 50% or even 20%
of K. But for very depleted or endangered populations, the idea that individuals keep
doing better as the population gets smaller is a risky one. The Grand Banks popula-
tion of cod, which was fished down to 1% or perhaps even 0.1% of K, has been pro-
tected since the early 1990s, and has yet to show convincing signs of recovery.

Warder Clyde Allee (1885—1955) was an American ecologist at the University
of Chicago in the early 20th century, who experimented on goldfish, brittlestars, flou
beetles, and, in fact, almost anything unlucky enough to cross his path. Allee showed
that, in fact, individuals in a population can do worse when the population becomes
very small or very sparse.” There are numerous ecological reasons why this might
be—for example, they may not find a suitable mate or may need large groups to fin
food or express social behavior, or in the case of goldfish they may alter the water
chemistry in their favour. As a result of Allee’s work, a population where the per
capita growth rate declines at low population size is said to show an Allee effect. The
jury is still out on whether Grand Banks cod are suffering from an Allee effect, but
there are some possible mechanisms—females may not be able to find a mate, or a
mate of the right size, or maybe the adult cod used to eat the fish that eat the juvenile
cod. On the other hand, there is nothing that an adult cod likes more than a snack of
baby cod—they are not fish with very picky eating habits—so these arguments may
not stack up. For the moment we know very little except that there are still no cod.

Allee effects can be modelled in many ways. One of the simplest mathematical
models, a variation of the logistic equation, is:

A rN(l - LV)(LV - 1). @
dt K/\A

where A is called the Allee threshold. The value N (f) = A is the population size below
which the population growth rate becomes negative due to an Allee effect—situated at

*Population size and population density are mathematically interchangeable, assuming a fixed area i
which the population lives (although they may not necessarily be interchangeable for the individuals in
question).
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a value of N somewhere between N = 0 and N = K, that is, 0 < A < K, depending on
the species (but for most species a good bit closer to 0 than K luckily).

Equation (4) is not as straightforward to solve for N(7) as (3), but we don’t need
to solve it to gain some insights into its dynamics. If you work through Problems 2
and 3, you will see that the consequences of equation (4) can be disastrous for endan-
gered populations.

Related Problems

1. (a) The logistic equation (3) can be solved explicitly for N(¢) using the technique
of partial fractions. Do this, and plot N(?) as a function of  for 0 = ¢ = 10.
Appropriate values for r, K, and N(0) are » = 1, K = 1, N(0) = 0.01 (fish per
cubic metre of seawater, say). The graph of N(7) is called a sigmoid growth
curve.

(b) The value of r can tell us a lot about the ecology of a species—sardines,
where females mature in less than one year and have millions of eggs, have
a high r, while sharks, where females bear a few live young each year, have
a low r. Play with r and see how it affects the shape of the curve. Question:
If a marine protected area is put in place to stop overfishing, which species
will recover quickest—sardines or sharks?

2. Find the population equilibria for the model in (4). [Hint: The population is at

Copper sharks and bronze whaler sharks equilibrium when dN/dt = 0, that is, the population is neither growing nor

feeding on a bait ball of sardines off the shrinking. You should find three values of N for which the population is at equi-

east coast of South Africa librium.]

3. Population equilibria can be stable or unstable. If, when a population deviates a
bit from the equilibrium value (as populations inevitably do), it tends to return to
it, this is a stable equilibrium; if, however, when the population deviates from
the equilibrium it tends to diverge from it ever further, this is an unstable equi-
librium. Think of a ball in the pocket of a snooker table versus a ball balanced on
a snooker cue. Unstable equilibria are a feature of Allee effect models such as
(4). Use a phase portrait of the autonomous equation (4) to determine whether
the nonzero equilibria that you found in Problem 2 are stable or unstable. [Hint:
See Section 2.1 of the text.]

4. Discuss the consequences of the result above for a population N(7) fluctuatin
close to the Allee threshold A.

Doug Perrine/Getty
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Wolf Population Dynamics
by C. J. Knickerbocker

Early in 1995, after much controversy, public debate, and a 70-year absence, gray
wolves were re introduced into Yellowstone National Park and Central Idaho. During
this 70-year absence, significant changes were recorded in the populations of other
predator and prey animals residing in the park. For instance, the elk and coyote pop-
ulations had risen in the absence of influence from the larger gray wolf. With the
reintroduction of the wolf in 1995, we anticipated changes in both the predator and
prey animal populations in the Yellowstone Park ecosystem as the success of the
wolf population is dependent upon how it influences and is influenced by the other
species in the ecosystem.

For this study, we will examine how the elk (prey) population has been influ
enced by the wolves (predator). Recent studies have shown that the elk population
has been negatively impacted by the reintroduction of the wolves. The elk population
fell from approximately 18,000 in 1995 to approximately 7,000 in 2009. This article
asks the question of whether the wolves could have such an effect and, if so, could
the elk population disappear?

Let’s begin with a more detailed look at the changes in the elk population inde-
pendent of the wolves. In the 10 years prior to the introduction of wolves, from 1985
to 1995, one study suggested that the elk population increased by 40% from 13,000
in 1985 to 18,000 in 1995. Using the simplest differential equation model for popu-
lation dynamics, we can determine the growth rate for elks (represented by the vari-
able r) prior to the reintroduction of the wolves.

dE
=~ "B E0) =13.0,E(10) = 18.0 )

In this equation, E(7) represents the elk population (in thousands) where ¢ is measured
in years since 1985. The solution, which is left as an exercise for the reader, finds the
combined birth/death growth rate r to be approximately 0.0325 yielding:

E(f) = 13.0 &9

In 1995, 21 wolves were initially released, and their numbers have risen. In
2007, biologists estimated the number of wolves to be approximately 171.

To study the interaction between the elk and wolf populations, let’s consider the
following predator-prey model for the interaction between the elk and wolf within
the Yellowstone ecosystem:

dE = 0.0325E — 0.8EW

dt

dw

o —0.6W + 0.05EW (@)

E(0) = 18.0, W(0) = 0.021

where E(?) is the elk population and W(z) is the wolf population. All populations are
measured in thousands of animals. The variable 7 represents time measured in years
from 1995. So, from the initial conditions, we have 18,000 elk and 21 wolves in the
year 1995. The reader will notice that we estimated the growth rate for the elk to be
the same as that estimated above r = 0.0325.
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Before we attempt to solve the model (2), a qualitative analysis of the system
can yield a number of interesting properties of the solutions. The first equation
shows that the growth rate of the elk (dE/dr) is positively impacted by the size of
the herd (0.0325E). This can be interpreted as the probability of breeding in-
creases with the number of elk. On the other hand the nonlinear term (0.8 EW) has
a negative impact on the growth rate of the elk since it measures the interaction
between predator and prey. The second equation dW/dt = —0.6W + 0.05EW
shows that the wolf population has a negative effect on its own growth which can
be interpreted as more wolves create more competition for food. But, the interac-
tion between the elk and wolves (0.05SEW) has a positive impact since the wolves
are finding more food.

Since an analytical solution cannot be found to the initial-value problem (2), we
need to rely on technology to find approximate solutions. For example, below is a set
of instructions for finding a numerical solution of the initial-value problem using the
computer algebra system MAPLE.

el := diff(e(t),t)-0.0325*e(t) + 0.8 *e(t)*w(t)
e2 := diff(w(t),t)+0.6 *w(t) - 0.05* e(t)*w(t)
sys := {el,e2}

ic := {e(0)=18.0,w(0)=0.021}

ivp := sys union ic :

H:= dsolve (ivp,{e(t),w(t)},numeric)

The graphs in Figures 1 and 2 show the populations for both species between 1995
and 2009. As predicted by numerous studies, the reintroduction of wolves into
Yellowstone had led to a decline in the elk population. In this model, we see the popula-
tion decline from 18,000 in 1995 to approximately 7,000 in 2009. In contrast, the wolf
population rose from an initial count of 21 in 1995 to a high of approximately 180 in
2004.

20000 200
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PN
16000 160 7 N
_ 14000 < 140 N
=]
£ 12000 5 120 /
2. 10000 £ 100
3 ) /
S 8000 - = 80
= 6000 Z 60 /
4000 40
2000 20
0 0
1995 1997 1999 2001 2003 2005 2007 2009 1995 1997 1999 2001 2003 2005 2007 2009
Year Year
FIGURE 1 Elk population FIGURE 2 Wolf population

The alert reader will note that the model also shows a decline in the wolf popu-
lation after 2004. How might we interpret this? With the decline in the elk population
over the first 10 years, there was less food for the wolves and therefore their popula-
tion begins to decline.

Figure 3 below shows the long-term behavior of both populations. The interpre-
tation of this graph is left as an exercise for the reader.

Information on the reintroduction of wolves into Yellowstone Park and central
Idaho can be found on the Internet. For example, read the U.S. Fish and Wildlife
Service news release of November 23, 1994, on the release of wolves into
Yellowstone National Park.
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FIGURE 3 Long-term behavior of the populations

Related Problems

1. Solve the pre-wolf initial-value problem (1) by first solving the differential
equation and applying the initial condition. Then apply the terminal condition to
find the growth rate

2. Biologists have debated whether the decrease in the elk from 18,000 in 1995 to
7,000 in 2009 is due to the reintroduction of wolves. What other factors might
account for the decrease in the elk population?

3. Consider the long-term changes in the elk and wolf populations. Are these cyclic
changes reasonable? Why is there a lag between the time when the elk begins to
decline and the wolf population begins to decline? Are the minimum values for
the wolf population realistic? Plot the elk population versus the wolf population
and interpret the results.

4. What does the initial-value problem (1) tell us about the growth of the elk pop-
ulation without the influence of the wolves? Find a similar model for the intro-
duction of rabbits into Australia in 1859 and the impact of introducing a prey
population into an environment without a natural predator population.
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Bungee jumping from a bridge

Bridge

Bungee

100 ft

174 ft

x=74
Water

FIGURE 1 The bungee setup

Bungee Jumping
by Kevin Cooper

Suppose that you have no sense. Suppose that you are standing on a bridge above the
Malad River canyon. Suppose that you plan to jump off that bridge. You have no sui-
cide wish. Instead, you plan to attach a bungee cord to your feet, to dive gracefully
into the void, and to be pulled back gently by the cord before you hit the river that is
174 feet below. You have brought several different cords with which to affix your
feet, including several standard bungee cords, a climbing rope, and a steel cable. You
need to choose the stiffness and length of the cord so as to avoid the unpleasantness
associated with an unexpected water landing. You are undaunted by this task, because
you know math!

Each of the cords you have brought will be tied off so as to be 100 feet long
when hanging from the bridge. Call the position at the bottom of the cord 0, and
measure the position of your feet below that “natural length” as x(r), where x increases
as you go down and is a function of time ¢. See Figure 1. Then, at the time you
jump, x(0) =—100, while if your six-foot frame hits the water head first, at that time
x(f) = 174 — 100 — 6 = 68. Notice that distance increases as you fall, and so your
velocity is positive as you fall and negative when you bounce back up. Note also
that you plan to dive so your head will be six feet below the end of the chord when
it stops you.

You know that the acceleration due to gravity is a constant, called g, so that the
force pulling downwards on your body is mg. You know that when you leap from the
bridge, air resistance will increase proportionally to your speed, providing a force in
the opposite direction to your motion of about Bv, where 3 is a constant and v is your
velocity. Finally, you know that Hooke’s law describing the action of springs says
that the bungee cord will eventually exert a force on you proportional to its distance
past its natural length. Thus, you know that the force of the cord pulling you back
from destruction may be expressed as

0 x=0
—kx x>0

b(x) = {

The number % is called the spring constant, and it is where the stiffness of the cord
you use influences the equation. For example, if you used the steel cable, then k
would be very large, giving a tremendous stopping force very suddenly as you passed
the natural length of the cable. This could lead to discomfort, injury, or even a
Darwin award. You want to choose the cord with a k value large enough to stop you
above or just touching the water, but not too suddenly. Consequently, you are inter-
ested in finding the distance you fall below the natural length of the cord as a func-
tion of the spring constant. To do that, you must solve the differential equation that
we have derived in words above: The force mx” on your body is given by

mx" = mg + b(x) — Bx’.

Here mg is your weight, 160 Ib., and x' is the rate of change of your position below
the equilibrium with respect to time; i.e., your velocity. The constant 3 for air resis-
tance depends on a number of things, including whether you wear your skin-tight
pink spandex or your skater shorts and XXL T-shirt, but you know that the value
today is about 1.0.

P-11
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against x'(r) for a bungee jump

This is a nonlinear differential equation, but inside it are two linear differential
equations, struggling to get out. We will work with such equations more extensively
in later chapters, but we already know how to solve such equations from our past
experience. When x < 0, the equation is mx” = mg — Bx’, while after you pass the
natural length of the cord it is mx” = mg — kx — Bx’. We will solve these separately,
and then piece the solutions together when x(7) = 0.

In Problem 1 you find an expression for your position ¢ seconds after you step off
the bridge, before the bungee cord starts to pull you back. Notice that it does not
depend on the value for &, because the bungee cord is just falling with you when you
are above x(f) = 0. When you pass the natural length of the bungee cord, it does start
to pull back, so the differential equation changes. Let #; denote the first time for which
x(t;) = 0, and let v; denote your speed at that time. We can thus describe the motion
for x(#) > 0 using the problem x" = g — kx — Bx', x(t;) = 0, x'(#;) = v1. An illustration
of a solution to this problem in phase space can be seen in Figure 2.

This will yield an expression for your position as the cord is pulling on you. All
we have to do is to find out the time #, when you stop going down. When you stop
going down, your velocity is zero, i.e., x'() = 0.

As you can see, knowing a little bit of math is a dangerous thing. We remind
you that the assumption that the drag due to air resistance is linear applies only for
low speeds. By the time you swoop past the natural length of the cord, that approx-
imation is only wishful thinking, so your actual mileage may vary. Moreover,
springs behave nonlinearly in large oscillations, so Hooke’s law is only an approx-
imation. Do not trust your life to an approximation made by a man who has been
dead for 200 years. Leave bungee jumping to the professionals.

Related Problems

1. Solve the equation mx” + Bx’ = mg for x(¢), given that you step off the bridge—no
jumping, no diving! Stepping off means x(0) = —100, x'(0) = 0. You may use
mg =160, B=1, and g = 32.

2. Use the solution from Problem 1 to compute the length of time #; that you freefall
(the time it takes to go the natural length of the cord: 100 feet).

3. Compute the derivative of the solution you found in Problem 1 and evaluate it at
the time you found in Problem 2. Call the result v;. You have found your down-
ward speed when you pass the point where the cord starts to pull.

4. Solve the initial-value problem
mx" + Bx" + kx = mg, x(t)) = 0, x'(¢;)) = v,.

For now, you may use the value k = 14, but eventually you will need to replace
that with the actual values for the cords you brought. The solution x(¢) repre-
sents the position of your feet below the natural length of the cord after it starts
to pull back.

5. Compute the derivative of the expression you found in Problem 4 and solve for
the value of # where it is zero. This time is #,. Be careful that the time you compute
is greater than #,—there are several times when your motion stops at the top and
bottom of your bounces! After you find #,, substitute it back into the solution you
found in Problem 4 to find your lowest position

6. You have brought a soft bungee cord with k= 8.5, a stiffer cord with k= 10.7, and
a climbing rope for which k = 16.4. Which, if any, of these may you use safely
under the conditions given?

7. You have a bungee cord for which you have not determined the spring constant.
To do so, you suspend a weight of 10 Ib. from the end of the 100-foot cord, caus-
ing the cord to stretch 1.2 feet. What is the k value for this cord? You may neglect
the mass of the cord itself.
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The Collapse of the Tacoma
Narrows Suspension Bridge

by Gilbert N. Lewis

In the summer of 1940, the Tacoma Narrows Suspension Bridge in the State of
Washington was completed and opened to traffic. Almost immediately, observers no-
ticed that the wind blowing across the roadway would sometimes set up large verti-
cal vibrations in the roadbed. The bridge became a tourist attraction as people came
to watch, and perhaps ride, the undulating bridge. Finally, on November 7, 1940, dur-
ing a powerful storm, the oscillations increased beyond any previously observed, and
the bridge was evacuated. Soon, the vertical oscillations became rotational, as ob-

e | served by looking down the roadway. The entire span was eventually shaken apart by

i

The rebuilt Tacoma Narrows bridge (1950)
and new parallel bridge (2009)
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the large vibrations, and the bridge collapsed. Figure 1 shows a picture of the bridge
during the collapse. See [1] and [2] for interesting and sometimes humorous anec-
dotes associated with the bridge. Or, do an Internet search with the key words
“Tacoma Bridge Disaster” in order to find and view some interesting videos of the
collapse of the bridge.

The noted engineer von Karman was asked to determine the cause of the col-
lapse. He and his coauthors [3] claimed that the wind blowing perpendicularly across
the roadway separated into vortices (wind swirls) alternately above and below the
roadbed, thereby setting up a periodic, vertical force acting on the bridge. It was this
force that caused the oscillations. Others further hypothesized that the frequency of
this forcing function exactly matched the natural frequency of the bridge, thus lead-
ing to resonance, large oscillations, and destruction. For almost fifty years, resonance
was blamed as the cause of the collapse of the bridge, although the von Karman
group denied this, stating that “it is very improbable that resonance with alternating
vortices plays an important role in the oscillations of suspension bridges” [3].

As we can see from equation (31) in Section 5.1.3, resonance is a linear phe-
nomenon. In addition, for resonance to occur, there must be an exact match between
the frequency of the forcing function and the natural frequency of the bridge.
Furthermore, there must be absolutely no damping in the system. It should not be
surprising, then, that resonance was not the culprit in the collapse.

If resonance did not cause the collapse of the bridge, what did? Recent research
provides an alternative explanation for the collapse of the Tacoma Narrows Bridge.
Lazer and McKenna [4] contend that nonlinear effects, and not linear resonance,
were the main factors leading to the large oscillations of the bridge (see [5] for a good
review article). The theory involves partial differential equations. However, a simpli-
fied model leading to a nonlinear ordinary differential equation can be constructed.

The development of the model below is not exactly the same as that of Lazer and
McKenna, but it results in a similar differential equation. This example shows an-
other way that amplitudes of oscillation can increase.

Consider a single vertical cable of the suspension bridge. We assume that it acts
like a spring, but with different characteristics in tension and compression, and with
no damping. When stretched, the cable acts like a spring with Hooke’s constant, b,
while, when compressed, it acts like a spring with a different Hooke’s constant, a. We
assume that the cable in compression exerts a smaller force on the roadway than
when stretched the same distance, so that 0 < a < b. Let the vertical deflectio
(positive direction downward) of the slice of the roadbed attached to this cable be
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denoted by y(#), where ¢ represents time, and y = 0 represents the equilibrium posi-
tion of the road. As the roadbed oscillates under the influence of an applied vertical
force (due to the von Karman vortices), the cable provides an upward restoring force
equal to by when y > 0 and a downward restoring force equal to ay when y < 0. This
change in the Hooke’s Law constant at y = 0 provides the nonlinearity to the differ-
ential equation. We are thus led to consider the differential equation derived from
Newton’s second law of motion

my" + f(y) = g(0),
where f(y) is the nonlinear function given by
)by ify 0
o) = {ay ify < 0}’
g(?) is the applied force, and m is the mass of the section of the roadway. Note that
the differential equation is linear on any interval on which y does not change sign.
Now, let us see what a typical solution of this problem would look like. We will
assume that m = 1 kg, b = 4 N/m, a = 1 N/m, and g(#) = sin(47) N. Note that the fre-
quency of the forcing function is larger than the natural frequencies of the cable in
both tension and compression, so that we do not expect resonance to occur. We also
assign the following initial values to y: y(0) = 0, y’(0) = 0.01, so that the roadbed
starts in the equilibrium position with a small downward velocity.
Because of the downward initial velocity and the positive applied force, y(7) will

initially increase and become positive. Therefore, we first solve this initial-value
problem

Y+ 4y =sin(47), y(0) =0, »'(0)=0.01. ()

The solution of the equation in (1), according to Theorem 4.1.6, is the sum of the
complementary solution, y.(¢), and the particular solution, y,(#). It is easy to see
that y.(f) = cicos(2t) + csin(2¢) (equation (9), Section 4.3), and y,(f) = —ﬁsin(4t)
(Table 4.4.1, Section 4.4). Thus,

1
() = cico0s(2f) + ¢, sin(2f) — Esin(4t). 2
The initial conditions give

y(0)=0=c,
1
y(0) = 0.01 =26, - 3,

so that ¢; = (0.01 + 1)/2. Therefore, (2) becomes
0 = 1(0 01 + 1>sin(2r) ~ Lena
A=\ 73 12
in(2 1(0 01 + 1) ! 2 &
= n| = o. o .
sin(21) > 3 6cos( )

We note that the first positive value of  for which y(¢) is again equal to zero is t = 7.
At that point, y'(3) = —(0.01 + 2). Therefore, equation (3) holds on [0, 7/2].
After t = 7, y becomes negative, so we must now solve the new problem

Yy + y = sin(4), y(g) =0, y’(%) = —<0.01 A %) @)

Proceeding as above, the solution of (4) is

2 1
y(?) <0.01 F g>cost = Esin(4t)

5
cost[(0.0l I z) = isintcos(2t)]. ®
5 15
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The next positive value of r after t = 7 at which y(r) = 0 is = =7, at which point
¥'(E) = 0.01 + 2, so that equation (5) holds on [w/2, 37/2].

At this point, the solution has gone through one cycle in the time interval [0, 37” .
During this cycle, the section of the roadway started at the equilibrium with positive
velocity, became positive, came back to the equilibrium position with negative ve-
locity, became negative, and finally returned to the equilibrium position with positive
velocity. This pattern continues indefinitel , with each cycle covering 37’7 time units.
The solution for the next cycle is

) = sin@t)[—%(o.m + %) — é cos(2t)] on [37/2,2m7],
(6)

8 4
o) = sint[— (0.01 + E) T costcos(2t)] on [2m,37].

It is instructive to note that the velocity at the beginning of the second cycle is
0.01 + %), while at the beginning of the third cycle it is (0.01 + %). In fact, the
velocity at the beginning of each cycle is % greater than at the beginning of the pre-
vious cycle. It is not surprising then that the amplitude of oscillations will increase
over time, since the amplitude of (one term in) the solution during any one cycle is
directly related to the velocity at the beginning of the cycle. See Figure 2 for a
graph of the deflection function on the interval [0, 377]. Note that the maximum
deflection on [37/2, 277] is larger than the maximum deflection on [0, 77 /2], while
the maximum deflection on [27r, 37r] is larger than the maximum deflection on
[7/2,37/2].

It must be remembered that the model presented here is a very simplified one-
dimensional model that cannot take into account all of the intricate interactions of
real bridges. The reader is referred to the account by Lazer and McKenna [4] for a
more complete model. More recently, McKenna [6] has refined that model to provide
a different viewpoint of the torsional oscillations observed in the Tacoma Bridge.

Research on the behavior of bridges under forces continues. It is likely that
the models will be refined over time, and new insights will be gained from the
research. However, it should be clear at this point that the large oscillations caus-
ing the destruction of the Tacoma Narrows Suspension Bridge were not the result
of resonance.

—0.6 +
FIGURE 2 Graph of deflection function y(z)

Related Problems

1. Solve the following problems and plot the solutions for 0 = ¢ = 67r. Note that reso-

nance occurs in the first problem but not in the second
(@) ¥" +y = —cost, y(0) = 0,y'(0) = 0.
(b) ¥ + y = cos(2¢), y(0) = 0, y'(0) = 0.
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Solve the initial-value problem y” + f(y) = sin(47), y(0) = 0, y'(0) = 1, where
__|by ify 0
o) = {ay ify < 0}’
and

(a) b= 1,a =4, (Compare your answer with the example in this project.)
(b) b=64,a=4,
(¢c) b=36,a=25.

Note that, in part (a), the condition b > a of the text is not satisfied. Plot the solu-
tions. What happens in each case as ¢ increases? What would happen in each case
if the second initial condition were replaced with y'(0) = 0.01? Can you make any
conclusions similar to those of the text regarding the long-term solution?

. What would be the effect of adding damping (+cy’, where ¢ > 0) to the system?

How could a bridge design engineer incorporate more damping into the bridge?
Solve the problem y” + ¢y’ + f(y) = sin(47), y(0) = 0, y'(0) = 1, where

_J4y ify 0
f(y)_{y ify<0}’
and

(a) ¢ =0.01
(b) ¢c=0.1
(¢) ¢c=05
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Murder at the Mayfair Diner

by Tom LoFaro

Dawn at the Mayfair Diner. The amber glow of streetlights mixed with the violent
red flash of police cruisers begins to fade with the rising of a furnace orange sun.
Detective Daphne Marlow exits the diner holding a steaming cup of hot joe in one
hand and a summary of the crime scene evidence in the other. Taking a seat on the
bumper of her tan LTD, Detective Marlow begins to review the evidence.

At 5:30 a.m. the body of one Joe D. Wood was found in the walk in refrigerator in
the diner’s basement. At 6:00 a.m. the coroner arrived and determined that the core body
temperature of the corpse was 85 degrees Fahrenheit. Thirty minutes later the coroner
again measured the core body temperature. This time the reading was 84 degrees
Fahrenheit. The thermostat inside the refrigerator reads 50 degrees Fahrenheit.

Daphne takes out a fading yellow legal pad and ketchup-stained calculator from
the front seat of her cruiser and begins to compute. She knows that Newton’s Law of
Cooling says that the rate at which an object cools is proportional to the difference
between the temperature T of the body at time ¢ and the temperature T, of the envi-
ronment surrounding the body. She jots down the equation

dr_ KT — T, >0 1

KT =T). 1>0, ()
where k is a constant of proportionality, 7'and 7, are measured in degrees Fahrenheit,
and ¢ is time measured in hours. Because Daphne wants to investigate the past using
positive values of time, she decides to correspond ¢ = 0 with 6:00 a.m., and so, for
example, = 4 is 2:00 a.m. After a few scratches on her yellow pad, Daphne realizes
that with this time convention the constant & in (1) will turn out to be positive. She
jots a reminder to herself that 6:30 a.m. is now 1 = —1/2.

As the cool and quiet dawn gives way to the steamy midsummer morning,
Daphne begins to sweat and wonders aloud, “But what if the corpse was moved into
the fridge in a feeble attempt to hide the body? How does this change my estimate?”’
She re-enters the restaurant and finds the grease-streaked thermostat above the empty
cash register. It reads 70 degrees Fahrenheit.

“But when was the body moved?” Daphne asks. She decides to leave this ques-
tion unanswered for now, simply letting /2 denote the number of hours the body has
been in the refrigerator prior to 6:00 a.m. For example, if # = 6, then the body was
moved at midnight.

Daphne flips a page on her legal pad and begins calculating. As the rapidly cooling
coffee begins to do its work, she realizes that the way to model the environmental tem-
perature change caused by the move is with the unit step function 2/(). She writes

T,(*) = 50 + 20t — h) @)
and below it the differential equation
dT
— = k(T-T,(1)). 3
= KT -T,0) ©

Daphne’s mustard-stained polyester blouse begins to drip sweat under the blaze
of a midmorning sun. Drained from the heat and the mental exercise, she fires up
her cruiser and motors to Boodle’s Café for another cup of java and a heaping plate
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of scrapple and fried eggs. She settles into the faux leather booth. The intense
air-conditioning conspires with her sweat-soaked blouse to raise goose flesh on her
rapidly cooling skin. The intense chill serves as a gruesome reminder of the tragedy
that occurred earlier at the Mayfair.

While Daphne waits for her breakfast, she retrieves her legal pad and quickly
reviews her calculations. She then carefully constructs a table that relates refrigeration
time 4 to time of death while eating her scrapple and eggs.

Shoving away the empty platter, Daphne picks up her cell phone to check in with
her partner Marie. “Any suspects?” Daphne asks.

“Yeah,” she replies, “we got three of ’em. The first is the late Mr. Wood’s ex-wife,
a dancer by the name of Twinkles. She was seen in the Mayfair between 5 and 6 p.m.
in a shouting match with Wood.”

“When did she leave?”

“A witness says she left in a hurry a little after six. The second suspect is a South
Philly bookie who goes by the name of Slim. Slim was in around 10 last night
having a whispered conversation with Joe. Nobody overheard the conversation, but
witnesses say there was a lot of hand gesturing, like Slim was upset or something.”

“Did anyone see him leave?”

“Yeah. He left quietly around 11. The third suspect is the cook.”

“The cook?”

“Yep, the cook. Goes by the name of Shorty. The cashier says he heard Joe and
Shorty arguing over the proper way to present a plate of veal scaloppine. She said
that Shorty took an unusually long break at 10:30 p.m. He took off in a huff when the
restaurant closed at 2:00 a.m. Guess that explains why the place was such a mess.”

“Great work, partner. I think I know who to bring in for questioning.”

Related Problems

1. Solve equation (1), which models the scenario in which Joe Wood is killed in the
refrigerator. Use this solution to estimate the time of death (recall that normal liv-
ing body temperature is 98.6 degrees Fahrenheit).

2. Solve the differential equation (3) using Laplace transforms. Your solution 7(7)
will depend on both 7 and 4. (Use the value of k found in Problem 1.)

3. (CAS) Complete Daphne’s table. In particular, explain why large values of & give
the same time of death.

h time body moved time of death
12 6:00 p.m.

—
—_—

—_
(=]

N (WA [ SN |2 [ee [©

4. Who does Daphne want to question and why?

5. Still Curious? The process of temperature change in a dead body is known as
algor mortis (rigor mortis is the process of body stiffening), and although it is not
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perfectly described by Newton’s Law of Cooling, this topic is covered in most
forensic medicine texts. In reality, the cooling of a dead body is determined by
more than just Newton’s Law. In particular, chemical processes in the body con-
tinue for several hours after death. These chemical processes generate heat, and
thus a near constant body temperature may be maintained during this time before
the exponential decay due to Newton’s Law of Cooling begins.

A linear equation, known as the Glaister equation, is sometimes used to give
a preliminary estimate of the time ¢ since death. The Glaister equation is

984 — T,

1.5 “@)

where Ty is measured body temperature (98.4° F is used here for normal living
body temperature instead of 98.6° F). Although we do not have all of the tools to
derive this equation exactly (the 1.5 degrees per hour was determined experimen-
tally), we can derive a similar equation via linear approximation.

Use equation (1) with an initial condition of 7(0) = T, to compute the equa-
tion of the tangent line to the solution through the point (0, 7)). Do not use the
values of T, or k found in Problem 1. Simply leave these as parameters. Next, let
T = 98.4 and solve for 7 to get

984 —T,

KT - T ©
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Collapsed apartment building in San
Francisco, October 18, 1989, the day after
the massive Loma Prieta earthquake

Earthquake Shaking of
Multistory Buildings

by Gilbert N. Lewis

Large earthquakes typically have a devastating effect on buildings. For example,
the famous 1906 San Francisco earthquake destroyed much of that city. More re-
cently, that area was hit by the Loma Prieta earthquake that many people in the
United States and elsewhere experienced second-hand while watching on televi-
sion the Major League Baseball World Series game that was taking place in San
Francisco in 1989.

In this project, we attempt to model the effect of an earthquake on a multi-story
building and then solve and interpret the mathematics. Let x; represent the horizontal
displacement of the ith floor from equlibrium. Here, the equilibrium position will be
a fixed point on the ground, so that xo = 0. During an earthquake, the ground moves
horizontally so that each floor is considered to be displaced relative to the ground.
We assume that the ith floor of the building has a mass m;, and that successive floor
are connected by an elastic connector whose effect resembles that of a spring.
Typically, the structural elements in large buildings are made of steel, a highly
elastic material. Each such connector supplies a restoring force when the floors are
displaced relative to each other. We assume that Hooke’s Law holds, with propor-
tionality constant k; between the ith and the (i + 1)st floors. That is, the restoring
force between those two floors i

F = ki(xi+1 — x),

where x;; — x; is the displacement (shift) of the (i + 1)st floor relative to the ith floo .
We also assume a similar reaction between the first floor and the ground, with pro-
portionality constant ky . Figure 1 shows a model of the building, while Figure 2
shows the forces acting on the ith floo .

My —1 kn—2

ny ky Mmivy | kxier — x;)
m ko kim1(6 — xi-1) | i
ground mi—1
FIGURE 1 Floors of building FIGURE 2 Forces on ith floo

P-21
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We can apply Newton’s second law of motion (Section 5.1), F = ma, to each
floor of the building to arrive at the following system of linear differential equations.

d?x,

ml? = —kox; + ki(x; — xy)
d’x

mzﬁ = —ki(xy = xp) + k(s — x3)
d’x,

m, P = _kn—l(xn - xn—l)'

As a simple example, consider a two-story building with each floor having
mass m = 5000 kg and each restoring force constant having a value of k = 10000 kg/s>.
Then the differential equations are

d’x

?21 = —4x1 + 2)C2
d*x

722 = 2x1 - 2)C2.

The solution by the methods of Section 8.2 is

x,(H) = 2¢, cos wt + 2c¢, sin w;t + 2¢5 cos w,ot + 2¢, Sin w,f,
X)) = (4 — w})c, cos wit + (4 — 0})c, sin w,t + (4 — w3)c; cos w,t
+ (4 — @d)c, sin wt,

where o, = V3 + V5 = 2288, and w, = V'3 — V5 = 0.874. Now suppose that
the following initial conditions are applied: x,(0) = 0, x{(0) = 0.2, x,(0) = 0,
x5(0) = 0. These correspond to a building in the equilibrium position with the firs
floor being given a horizontal speed of 0.2 m/s. The solution of the initial value
problem is

x,(t) = 2¢,sin it + 2¢, Sin w,t,

X(1) = (4 — w})c,sin wif + (4 — w3)ey sin wt,

where ¢, = (4 — 03)0.1/[(w? — ®})w,] = 0.0317 = ¢,. See Figures 3 and 4 for
graphs of x|(¢) and x,(¢). Note that initially x; moves to the right but is slowed by the
drag of x,, while x; is initially at rest, but accelerates, due to the pull of x;, to over-
take x; within one second. It continues to the right, eventually pulling x; along until
the two-second mark. At that point, the drag of x; has slowed x; to a stop, after which
X, moves left, passing the equilibrium point at 3.2 seconds and continues moving left,
draging x; along with it. This back-and-forth motion continues. There is no damping
in the system, so that the oscillatory behavior continues forever.
xa(7)

0.2

x1(?)
0.10 |-
0.05 |
| (4
1 2 4 5
-0.05 |
-0.10 |

FIGURE 3  Graph of x(7)

1]

-0.1 F

FIGURE 4 Graph of xx(f)
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If a horizontal oscillatory force of frequency w, or w, is applied, we have a sit-
uation analogous to resonance discussed in Section 5.1.3. In that case, large oscil-
lations of the building would be expected to occur, possibly causing great damage
if the earthquake lasted an appreciable length of time.

Let’s define the following matrices and vector

m 0 0 0
0 0 0
M = 2 :
1 0 0 m,
—(ko + ky) ky 0 0 ... 0 0 0
k, —(ky; + k) k, 0 ... 0 0 0
0 k —(ky + k3) ks ... O 0 0
K = ; 2 (ks 3) ks :
0 0 0 0 O kn—Z _(kn—Z + kn—l) kn—l
0 0 0 0 . 0 k1 —k,_,
x(7)
t
X = [
x,(0)
Then the system of differential equations can be written in matrix form
d’X
M—- = KX or MX" =KX
dr

Note that the matrix M is a diagonal matrix with the mass of the ith floor being
the ith diagonal element. Matrix M has an inverse given by

mi' 0 0 - 0
I B
0 0 O m—l

n

We can therefore represent the matrix differential equation by
X'=M'KX or X'=AX

Where A = M~!K, the matrix M is called the mass matrix, and the matrix K is the
stiffness matrix.

The eigenvalues of the matrix A reveal the stability of the building during an earth-
quake. The eigenvalues of A are negative and distinct. In the first example, the eigen-
values are —3 + V/5 = —0.764 and —3 — V5 = —5.236. The natural frequencies
of the building are the square roots of the negatives of the eigenvalues. If A, is the ith eigen-
value, then w; = V —; is the ith frequency, fori = 1, 2, . . ., n. During an earth-
quake, a large horizontal force is applied to the first floo . If this is oscillatory in
nature, say of the form F(#) = G cosvyz, then large displacements may develop in the
building, especially if the frequency -y of the forcing term is close to one of the natural
frequencies of the building. This is reminiscent of the resonance phenomenon studied
in Section 5.1.3.
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As another example, suppose we have a 10-story building, where each floor has a
mass 10000 kg, and each ; value is 5000 kg/s?. Then

-1 05 O 0 0 0 0 0 0 0
05 -1 05 0 0 0 0 0 0 0
0 05 -1 05 0 0 0 0 0 0
0 0 05 -1 05 0 0 0 0 0
A= M-'K = 0 0 0 05 -1 05 0 0 0 0
0 0 0 0 05 -1 05 O 0 0
0 0 0 0 0 05 -1 05 O 0
0 0 0 0 0 0 05 -1 05 0
0 0 0 0 0 0 0 05 -1 05
0 0 0 0 0 0 0 0 05 -05

The eigenvalues of A are found easily using Mathematica or another similar computer
package. These values are —1.956, —1.826, —1.623, —1.365, —1.075, —0.777,
—0.5, —0.267, —0.099, and —0.011, with corresponding frequencies 1.399, 1.351,
1.274, 1.168, 1.037, 0.881, 0.707, 0.517, 0.315, and 0.105 and periods of oscillation
(2m/w) 4.491, 4.651, 4.932, 5.379, 6.059, 7.132, 8.887, 12.153, 19.947, and 59.840.
During a typical earthquake whose period might be in the range of 2 to 3 seconds, this
building does not seem to be in any danger of developing resonance. However, if
the k values were 10 times as large (multiply A by 10), then, for example, the sixth
period would be 2.253 seconds, while the fifth through seventh are all on the order of
2-3 seconds. Such a building is more likely to suffer damage in a typical earthquake
of period 23 seconds.

Related Problems

1. Consider a three-story building with the same m and k values as in the first exam-
ple. Write down the corresponding system of differential equations. What are the
matrices M, K, and A? Find the eigenvalues for A. What range of frequencies of
an earthquake would place the building in danger of destruction?

2. Consider a three-story building with the same m and k values as in the second
example. Write down the corresponding system of differential equations. What
are the matrices M, K, and A? Find the eigenvalues for A. What range of fre-
quencies of an earthquake would place the building in danger of destruction?

3. Consider the tallest building on your campus. Assume reasonable values for the
mass of each floor and for the proportionality constants between floors. If you
have trouble coming up with such values, use the ones in the example problems.
Find the matrices M, K, and A, and find the eigenvalues of A and the frequen-
cies and periods of oscillation. Is your building safe from a modest-sized period-
2 earthquake? What if you multiplied the matrix K by 10 (that is, made the
building stiffer)? What would you have to multiply the matrix K by in order to
put your building in the danger zone?

4. Solve the earthquake problem for the three-story building of Problem 1:

MX’ = KX + F(7),

where F(£) =G cosyt, G=EB,B=[1 0 0]", E=10,000 Ibs is the amplitude
of the earthquake force acting at ground level, and y = 3 is the frequency of the
earthquake (a typical earthquake frequency). See Section 8.3 for the method of
solving nonhomogeneous matrix differential equations. Use initial conditions
for a building at rest.
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Weapons and ammunition recovered during
military operations against Taliban militants
in South Waziristan in October 2009

Modeling Arms Races

by Michael Olinick

The last hundred years have seen numerous dangerous, destabilizing, and expensive
arms races. The outbreak of World War I climaxed a rapid buildup of armaments
among rival European powers. There was a similar mutual accumulation of conven-
tional arms just prior to World War II. The United States and the Soviet Union en-
gaged in a costly nuclear arms race during the forty years of the Cold War. Stockpiling
of ever-more deadly weapons is common today in many parts of the world, including
the Middle East, the Indian subcontinent, and the Korean peninsula.

British meteorologist and educator Lewis F. Richardson (1881-1953) developed
several mathematical models to analyze the dynamics of arms races, the evolution
over time of the process of interaction between countries in their acquisition of
weapons. Arms race models generally assume that each nation adjusts its accumula-
tion of weapons in some manner dependent on the size of its own stockpile and the
armament levels of the other nations.

Richardson’s primary model of a two country arms race is based on mutual
fear: A nation is spurred to increase its arms stockpile at a rate proportional to the
level of armament expenditures of its rival. Richardson’s model takes into account
internal constraints within a nation that slow down arms buildups: The more a
nation is spending on arms, the harder it is to make greater increases, because it
becomes increasingly difficult to divert society’s resources from basic needs such
as food and housing to weapons. Richardson also built into his model other factors
driving or slowing down an arms race that are independent of levels of arms expen-
ditures.

The mathematical structure of this model is a linked system of two first-orde
linear differential equations. If x and y represent the amount of wealth being spent on
arms by two nations at time #, then the model has the form

dx "

— =ay — mx r
dt Y

dy

— =bx —ny +

i X —ny + s

where @, b, m, and n are positive constants while r and s are constants which can be
positive or negative. The constants @ and b measure mutual fear; the constants m and
n represent proportionality factors for the “internal brakes” to further arms increases.
Positive values for r and s correspond to underlying factors of ill will or distrust that
would persist even if arms expenditures dropped to zero. Negative values for  and s
indicate a contribution based on goodwill.

The dynamic behavior of this system of differential equations depends on the
relative sizes of ab and mn together with the signs of r and s. Although the model
is a relatively simple one, it allows us to consider several different long-term out-
comes. It’s possible that two nations might move simultaneously toward mutual
disarmament, with x and y each approaching zero. A vicious cycle of unbounded
increases in x and y is another possible scenario. A third eventuality is that the arms
expenditures asymptotically approach a stable point (x*, y*) regardless of the initial
level of arms expenditures. In other cases, the eventual outcome depends on the
starting point. Figure 1 shows one possible situation with four different initial
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FIGURE 1 Expenditures approaching a stable point

levels, each of which leads to a “stable outcome,” the intersection of the nullclines
dx/dt = 0 and dy/dr = 0.

Although “real world” arms races seldom match exactly with Richardson’s model,
his pioneering work has led to many fruitful applications of differential equation models
to problems in international relations and political science. As two leading researchers in
the field note in [3], “The Richardson arms race model constitutes one of the most impor-
tant models of arms race phenomena and, at the same time, one of the most influentia
formal models in all of the international relations literature.”

Arms races are not limited to the interaction of nation states. They can take place
between a government and a paramilitary terrorist group within its borders as, for ex-
ample, the Tamil Tigers in Sri Lanka, the Shining Path in Peru, or the Taliban in
Afghanistan. Arms phenomena have also been observed between rival urban gangs
and between law enforcement agencies and organized crime.

The “arms” need not even be weapons. Colleges have engaged in “amenities
arms races,” often spending millions of dollars on more luxurious dormitories,
state- of-the-art athletic facilities, epicurean dining options, and the like, to be more
competitive in attracting student applications. Biologists have identified the possi-
bility of evolutionary arms races between and within species as an adaptation in one
lineage may change the selection pressure on another lineage, giving rise to a counter-
adaptation. Most generally, the assumptions represented in a Richardson-type
model also characterize many competitions in which each side perceives a need to
stay ahead of the other in some mutually important measure.

Related Problems

1. (a) By substituting the proposed solutions into the differential equations, show
that the solution of the particular Richardson arms model

=y—3x+3

Y

d
dr
d )
D o4y + 8
a_ 7
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with initial condition x(0) = 12, y(0) = 15 is
32 2
x(t) = ?e_z’ = 56_5’ + 2
32 4
W)= —Ze*+ e +3
3 3

What is the long-term behavior of this arms race?

(b) For the Richardson arms race model (a) with arbitrary initial conditions
x(0) = A, y(0) = B, show that the solution is given by

x(f) = Ce™ + De 2 + 2 C=@A-B+1)/3
where

y(f) = —2Ce™" + De™ + 3 D=QA+B-17)/3
Show that this result implies that the qualitative long-term behavior of such an
arms race is the same (x(f) — 2, y(f) — 3), no matter what the initial values of x
and y are.
. The qualitative long-term behavior of a Richardson arms race model can, in
some cases, depend on the initial conditions. Consider, for example, the system

dx
— =3y —2x—10
dt % *

D ge—3y— 10

a7
For each of the given initial conditions below, verify that the proposed solu-
tion works and discuss the long-term behavior:
(@ x(0)=1,y(0)=1:x@) = 10 — 9¢', () = 10 — 9¢'
(b) x(0)=1,y(0) =22:x() = 10 — 9™, y(#) = 10 + 127
(€) x(0)=1,y(0)=29:x(f) = —12¢7 + 3¢’ + 10, y(f) = 16¢~% + 3¢’ + 10
(d) x(0) = 10, ¥(0) = 10 : x(¢¥) = 10, y(¢r) = 10 for all ¢
. (a) As apossible alternative to the Richardson model, consider a stock adjustment
model for an arms race. The assumption here is that each country sets a desired
level of arms expenditures for itself and then changes its weapons stock pro-
portionally to the gap between its current level and the desired one. Show that
this assumption can be represented by the system of differential equations

—d)tc=a(x*—x)
dx

_=b *
0 O0* =)

where x* and y* are desired constant levels and a, b are positive constants.
How will x and y evolve over time under such a model?

(b) Generalize the stock adjustment model of (a) to a more realistic one where
the desired level for each country depends on the levels of both countries. In
particular, suppose x* has the form x* = ¢ + dy where ¢ and d are positive
constants and that y* has a similar format. Show that, under these assump-
tions, the stock adjustment model is equivalent to a Richardson model.

. Extend the Richardson model to three nations, deriving a system of linear differen-
tial equations if the three are mutually fearful: each one is spurred to arm by the ex-
penditures of the other two. How might the equations change if two of the nations
are close allies not threatened by the arms buildup of each other, but fearful of the
armaments of the third. Investigate the long-term behavior of such arms races.

. In the real world, an unbounded runaway arms race is impossible since there is
an absolute limit to the amount any country can spend on weapons; e.g. gross na-
tional product minus some amount for survival. Modify the Richardson model to
incorporate this idea and analyze the dynamics of an arms race governed by
these new differential equations.
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