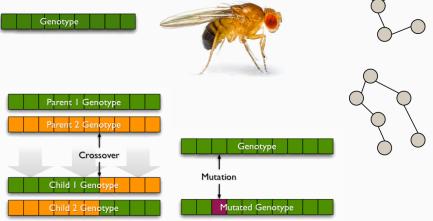
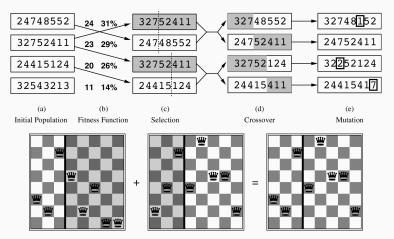

A Brief Introduction To Evolutionary Computation

András M. Joó

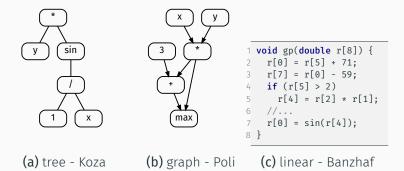
Evolutionary computation


- ► a subfield of artificial intelligence,
- ► simulates the Darwinian evolution in silico

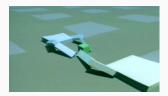

Terms

- ► genotype, phenotype, encoding, fitness function
- ► search operators: selection, crossover, mutation

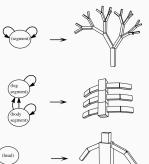
Genetic algorithms

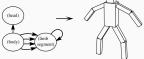

► linear representation (binary, integer, real, etc)

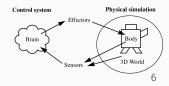
 why GAs work? John Holland (70s), building block hypothesis, schema theory


Genetic programming

- automatic generation of expressions / trees
- major representation types:


Toy examples


virtual creatures, Karl Sims, 1993



▶ bipedal creatures, T. Geijtenbeek, 2013

Evolving game playing algorithms

- games are important in computer science as they are abstract models of our world
- Omid E. at al: Genetic Algorithms for Evolving Computer Chess Programs (2013)
- outperformed a two-time world computer chess champion (3000+ Élő points)

Finding and fixing bugs

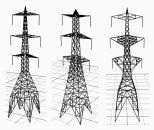
- the cost of software bugs world-wide is \$300B+/year (Cambridge University, 2013)
- Stephanie Forrest, et al: A Genetic Programming Approach to Automated Software Repair, GECCO, 2009

Speeding up programs

- Bowtie, a highly optimized DNA sequencing software package (maintained by John Hopkins Univ.)
- ► it consists of 50,000+ lines of hand written C++ code

- evolutionary computation achieved 70x speedup on certain sections
- William B. Langdon, Mark Harman: Optimising Existing Software with Genetic Programming IEEE Transactions on Evolutionary Computation, 2015.

- ► if you think that WannaCry is the worst thing that could have happened, think again
- undetectable malware can be evolved: Sadia Noreen et al, Evolvable malware GECCO, ACM, 2009



Construction

 roof structure with complex curvatures, Ottawa Railway Station, Kociecki, 2014

 pylons evolved to withstand icing and wind, British Architects pylon design competition, Byrne, 2014

Electrical engineering

- 2006 NASA ST5 spacecraft antenna, the world's first artificially-evolved object to fly in space
- wide beamwidth for a circularly polarized wave & wide impedance bandwidth

Aesthetic artefacts

(a) Sims, 94

(b) NeuroSystems

(c) McCormack, 94

(d) Collomosse, 2008

There is more to EC

- flavors: differential evolution, evolution strategy, grammatical evolution, neuroevolution, etc.
- zillions of ways to tweak: population model, selection/ recombination/ mutation zoos, parallel implementations, co-evolution, multi-objective variants, etc.
- (infamous) issues: premature convergence, loss of phenotypic/ genotypic diversity, code bloat, etc.
- lots of implementations: Java (ecj), Matlab (ga-builtin), C++ (beagle, galib), etc.

Takeaway thoughts

Evolutionary computation (EC) can

- come up with good engineering solutions
- generate aesthetic artefacts
- invent programs/ find and fix bugs based on positive & negative examples
- optimize programs better than the brightest software developers
- ► generate undetectable malware

Caution

- ► EC, although powerful, is no silver bullet
- ▶ there is no free lunch

