
Oracle Database 11g: Advanced
PL/SQL

Volume I • Student Guide

D52601GC10

Edition 1.0

March 2008

D54299

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Copyright © 2008, Oracle. All rights reserved.

Disclaimer

This document contains proprietary information and is protected by copyright and
other intellectual property laws. You may copy and print this document solely for your
own use in an Oracle training course. The document may not be modified or altered in
any way. Except where your use constitutes "fair use" under copyright law, you may
not use, share, download, upload, copy, print, display, perform, reproduce, publish,
license, post, transmit, or distribute this document in whole or in part without the
express authorization of Oracle.

The information contained in this document is subject to change without notice. If you
find any problems in the document, please report them in writing to: Oracle University,
500 Oracle Parkway, Redwood Shores, California 94065 USA. This document is not
warranted to be error-free.

Restricted Rights Notice

If this documentation is delivered to the United States Government or anyone using
the documentation on behalf of the United States Government, the following notice is
applicable:

U.S. GOVERNMENT RIGHTS
The U.S. Government’s rights to use, modify, reproduce, release, perform, display, or
disclose these training materials are restricted by the terms of the applicable Oracle
license agreement and/or the applicable U.S. Government contract.

Trademark Notice

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other
names may be trademarks of their respective owners.

Authors
Nancy Greenberg
Rick Green
Marcie Young

Technical Contributors
and Reviewers
Claire Bennett
Tom Best
Tammy Bradley
Yanti Chang
Ken Cooper
Laszlo Czinkoczki
David Jacob-Daub
Francesco Ferla
Mark Fleming
Clay Fuller
Laura Garza
Yash Jain
Bryn Llewelyn
Timothy McGlue
Essi Parast
Nagavalli Pataballa
Alan Paulson
Chaya Rao
Helen Robertson
Lauran Serhal
Clinton Shaffer
Jenny Tsai
Michael Versaci
Ted Witiuk

Editors
Vijayalakshmi Narasimhan
Susan Moxley

Graphic Designer
Steve Elwood

Publishers
Sujatha Nagendra
Jobi Varghese

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

 iii

Contents

Preface

1 Introduction

Course Objectives 1-2
Oracle Complete Solution 1-3
Lesson Agenda 1-4
Course Agenda 1-5
Lesson Agenda 1-7
Development Environments: Overview 1-8
Lesson Agenda 1-9
What Is Oracle SQL Developer? 1-10
Starting SQL Developer and Creating a Database Connection 1-11
Creating Schema Objects 1-12
Using the SQL Worksheet 1-13
Executing SQL Statements 1-15
Executing Saved Script Files: Method 1 1-16
Executing Saved SQL Scripts: Method 2 1-17
Creating an Anonymous Block 1-18
Editing the PL/SQL Code 1-19
Saving SQL Scripts 1-20
Debugging Procedures and Functions 1-21
Lesson Agenda 1-22
Using SQL*Plus 1-23
Coding PL/SQL in SQL*Plus 1-24
Lesson Agenda 1-25
Tables Used in This Course 1-26
The Order Entry Schema 1-27
The Human Resources Schema 1-29
Summary 1-30
Practice 1 Overview: Getting Started 1-31

2 PL/SQL Programming Concepts: Review
Objectives 2-2
Lesson Agenda 2-3
PL/SQL Block Structure 2-4

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

 iv

Naming Conventions 2-5
Procedures 2-6
Procedure: Example 2-7
Functions 2-8
Function: Example 2-9
Ways to Execute Functions 2-10
Lesson Agenda 2-11
Restrictions on Calling Functions from SQL Expressions 2-12
Lesson Agenda 2-14
PL/SQL Packages: Review 2-15
Components of a PL/SQL Package 2-16
Creating the Package Specification 2-17
Creating the Package Body 2-18
Lesson Agenda 2-19
Cursor 2-20
Processing Explicit Cursors 2-22
Explicit Cursor Attributes 2-23
Cursor FOR Loops 2-24
Cursor: Example 2-25
Lesson Agenda 2-26
Handling Exceptions 2-27
Exceptions: Example 2-29
Predefined Oracle Server Errors 2-30
Trapping Non-Predefined Oracle Server Errors 2-33
Trapping User-Defined Exceptions 2-34
Lesson Agenda 2-35
The RAISE_APPLICATION_ERROR Procedure 2-36
Lesson Agenda 2-38
Dependencies 2-39
Displaying Direct and Indirect Dependencies 2-41
Lesson Agenda 2-42
Using Oracle-Supplied Packages 2-43
Some of the Oracle-Supplied Packages 2-44
DBMS_OUTPUT Package 2-45
UTL_FILE Package 2-46
Summary 2-47
Practice 2: Overview 2-48

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

 v

3 Designing PL/SQL Code
Objectives 3-2
Lesson Agenda 3-3
Guidelines for Cursor Design 3-4
Lesson Agenda 3-9
Cursor Variables: Overview 3-10
Working with Cursor Variables 3-11
Strong Versus Weak REF CURSOR Variables 3-12
Step 1: Defining a REF CURSOR Type 3-13
Step 1: Declaring a Cursor Variable 3-14
Step 1: Declaring a REF CURSOR Return Type 3-15
Step 2: Opening a Cursor Variable 3-16
Step 3: Fetching from a Cursor Variable 3-18
Step 4: Closing a Cursor Variable 3-19
Passing Cursor Variables as Arguments 3-20
Using the Predefined Type SYS_REFCURSOR 3-23
Rules for Cursor Variables 3-25
Comparing Cursor Variables with Static Cursors 3-26
Lesson Agenda 3-27
Predefined PL/SQL Data Types 3-28
Subtypes: Overview 3-29
Benefits of Subtypes 3-31
Declaring Subtypes 3-32
Using Subtypes 3-33
Subtype Compatibility 3-34
Summary 3-35
Practice 3: Overview 3-36

4 Working with Collections
Objectives 4-2
Lesson Agenda 4-3
Understanding Collections 4-4
Collection Types 4-5
Lesson Agenda 4-7
Using Associative Arrays 4-8
Creating the Array 4-9
Populating the Array 4-10
Lesson Agenda 4-12
Using Nested Tables 4-13
Nested Table Storage 4-14

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

 vi

Creating Nested Tables 4-15
Declaring Collections: Nested Table 4-16
Using Nested Tables 4-17
Referencing Collection Elements 4-19
Using Nested Tables in PL/SQL 4-20
Lesson Agenda 4-22
Understanding Varrays 4-23
Declaring Collections: Varray 4-24
Using Varrays 4-25
Lesson Agenda 4-27
Working with Collections in PL/SQL 4-28
Initializing Collections 4-31
Referencing Collection Elements 4-33
Using Collection Methods 4-34
Manipulating Individual Elements 4-38
Lesson Agenda 4-40
Avoiding Collection Exceptions 4-41
Avoiding Collection Exceptions: Example 4-42
Lesson Agenda 4-43
Listing Characteristics for Collections 4-44
Guidelines for Using Collections Effectively 4-45
Summary 4-46
Practice 4: Overview 4-47

5 Using Advanced Interface Methods
Objectives 5-2
Calling External Procedures from PL/SQL 5-3
Benefits of External Procedures 5-4
External C Procedure Components 5-5
How PL/SQL Calls a C External Procedure 5-6
The extproc Process 5-7
The Listener Process 5-8
Development Steps for External C Procedures 5-9
The Call Specification 5-13
Publishing an External C Routine 5-16
Executing the External Procedure 5-17
Java: Overview 5-18
Calling a Java Class Method by Using PL/SQL 5-19
Development Steps for Java Class Methods 5-20
Loading Java Class Methods 5-21
Publishing a Java Class Method 5-22

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

 vii

Executing the Java Routine 5-24
Creating Packages for Java Class Methods 5-25
Summary 5-26
Practice 5: Overview 5-27

6 Implementing Fine-Grained Access Control for VPD
Objectives 6-2
Lesson Agenda 6-3
Fine-Grained Access Control: Overview 6-4
Identifying Fine-Grained Access Features 6-5
How Fine-Grained Access Works 6-6
Why Use Fine-Grained Access? 6-8
Lesson Agenda 6-9
Using an Application Context 6-10
Creating an Application Context 6-12
Setting a Context 6-13
Implementing a Policy 6-15
Step 2: Creating the Package 6-16
Step 3: Defining the Policy 6-18
Step 4: Setting Up a Logon Trigger 6-21
Example Results 6-22
Data Dictionary Views 6-23
Using the ALL_CONTEXT Dictionary View 6-24
Policy Groups 6-25
More About Policies 6-26
Summary 6-28
Practice 6: Overview 6-29

7 Manipulating Large Objects
Objectives 7-2
Lesson Agenda 7-3
What Is a LOB? 7-4
Contrasting LONG and LOB Data Types 7-6
Components of a LOB 7-7
Internal LOBs 7-8
Managing Internal LOBs 7-9
Lesson Agenda 7-10
What Are BFILEs? 7-11
Securing BFILEs 7-12
What Is a DIRECTORY? 7-13

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

 viii

Guidelines for Creating DIRECTORY Objects 7-14
Using the DBMS_LOB Package 7-15
DBMS_LOB Package 7-17
DBMS_LOB.READ and DBMS_LOB.WRITE 7-18
Managing BFILEs 7-19
Preparing to Use BFILEs 7-20
Populating BFILE Columns with SQL 7-21
Populating a BFILE Column with PL/SQL 7-22
Using DBMS_LOB Routines with BFILEs 7-23
Lesson Agenda 7-24
Migrating from LONG to LOB 7-25
Lesson Agenda 7-27
Initializing LOB Columns Added to a Table 7-28
Populating LOB Columns 7-30
Writing Data to a LOB 7-31
Reading LOBs from the Table 7-35
Updating LOB by Using DBMS_LOB in PL/SQL 7-37
Checking the Space Usage of a LOB Table 7-38
Selecting CLOB Values by Using SQL 7-40
Selecting CLOB Values by Using DBMS_LOB 7-41
Selecting CLOB Values in PL/SQL 7-42
Removing LOBs 7-43
Lesson Agenda 7-44
Temporary LOBs 7-45
Creating a Temporary LOB 7-46
Summary 7-47
Practice 7: Overview 7-48

8 Administering SecureFile LOBs
Objectives 8-2
Lesson Agenda 8-3
SecureFile LOBs 8-4
Storage of SecureFile LOBs 8-5
Creating a SecureFile LOB 8-6
Writing Data to the SecureFile LOB 8-7
Reading Data from the Table 8-8
Lesson Agenda 8-9
Enabling Deduplication and Compression 8-10
Enabling Deduplication and Compression: Example 8-11

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

 ix

Step 1: Checking Space Usage 8-12
Enabling Deduplication and Compression: Example 8-15
Using Encryption 8-18
Using Encryption: Example 8-20
Lesson Agenda 8-21
Migrating from BasicFile to SecureFile Format 8-22
Lesson Agenda 8-25
Comparing Performance 8-26
Summary 8-27
Practice 8 Overview: Using SecureFile Format LOBs 8-28

9 Performance and Tuning
Objectives 9-2
Lesson Agenda 9-3
Native and Interpreted Compilation 9-4
Deciding on a Compilation Method 9-5
Setting the Compilation Method 9-6
Viewing the Compilation Settings 9-8
Setting Up a Database for Native Compilation 9-10
Compiling a Program Unit for Native Compilation 9-11
Lesson Agenda 9-12
Tuning PL/SQL Code 9-13
Avoiding Implicit Data Type Conversion 9-14
Understanding the NOT NULL Constraint 9-15
Using the PLS_INTEGER Data Type for Integers 9-16
Using the SIMPLE_INTEGER Data Type 9-17
Modularizing Your Code 9-18
Comparing SQL with PL/SQL 9-19
Using Bulk Binding 9-22
Using SAVE EXCEPTIONS 9-28
Handling FORALL Exceptions 9-29
Rephrasing Conditional Control Statements 9-30
Passing Data Between PL/SQL Programs 9-32
Lesson Agenda 9-35
Introducing Intraunit Inlining 9-36
Using Inlining 9-37
Inlining Concepts 9-38
Inlining: Example 9-41
Inlining: Guidelines 9-43

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

 x

Summary 9-44
Practice 9: Overview 9-45

10 Improving Performance with Caching

Objectives 10-2
Lesson Agenda 10-3
What Is Result Caching? 10-4
Increasing Result Cache Memory Size 10-5
Setting Result_Cache_Max_Size 10-6
Enabling Query Result Cache 10-7
Using the DBMS_RESULT_CACHE Package 10-8
Lesson Agenda 10-9
SQL Query Result Cache 10-10
Clearing the Shared Pool and Result Cache 10-12
Examining the Memory Cache 10-13
Examining the Execution Plan for a Query 10-14
Examining Another Execution Plan 10-15
Executing Both Queries 10-16
Viewing Cache Results Created 10-17
Re-Executing Both Queries 10-18
Viewing Cache Results Found 10-19
Lesson Agenda 10-20
PL/SQL Function Result Cache 10-21
Marking PL/SQL Function Results to Be Cached 10-22
Clearing the Shared Pool and Result Cache 10-23
Lesson Agenda 10-24
Creating a PL/SQL Function Using the RESULT_CACHE Clause 10-25
Lesson Agenda 10-26
Calling the PL/SQL Function Inside a Query 10-27
Verifying Memory Allocation 10-28
Viewing Cache Results Created 10-29
Calling the PL/SQL Function Again 10-30
Viewing Cache Results Found 10-31
Confirming That the Cached Result Was Used 10-32
Summary 10-33
Practice 10 Overview: Examining SQL and PL/SQL Result Caching 10-34

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

 xi

11 Analyzing PL/SQL Code
Objectives 11-2
Lesson Agenda 11-3
Finding Coding Information 11-4
Using SQL Developer to Find Coding Information 11-9
Using DBMS_DESCRIBE 11-11
Using ALL_ARGUMENTS 11-14
Using SQL Developer to Report on Arguments 11-16
Using DBMS_UTILITY.FORMAT_CALL_STACK 11-18
Finding Error Information 11-20
Lesson Agenda 11-25
PL/Scope Concepts 11-26
Collecting PL/Scope Data 11-27
Using PL/Scope 11-28
The USER/ALL/DBA_IDENTIFIERS Catalog View 11-29
Sample Data for PL/Scope 11-30
Collecting Identifiers 11-32
Viewing Identifier Information 11-33
Performing a Basic Identifier Search 11-35
Using USER_IDENTIFIERS to Find All Local Variables 11-36
Finding Identifier Actions 11-37
Describing Identifier Actions 11-38
Lesson Agenda 11-39
DBMS_METADATA Package 11-40
Metadata API 11-41
Subprograms in DBMS_METADATA 11-42
FETCH_xxx Subprograms 11-43
SET_FILTER Procedure 11-44
Filters 11-45
Examples of Setting Filters 11-46
Programmatic Use: Example 1 11-47
Programmatic Use: Example 2 11-49
Browsing APIs 11-51
Browsing APIs: Examples 11-52
Summary 11-54
Practice 11: Overview 11-55

12 Profiling and Tracing PL/SQL Code
Objectives 12-2
Lesson Agenda 12-3

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

 xii

Tracing PL/SQL Execution 12-4
Tracing PL/SQL: Steps 12-7
Step 1: Enable Specific Subprograms 12-8
Steps 2 and 3: Identify a Trace Level and Start Tracing 12-9
Step 4: Turn Off Tracing 12-10
Step 5: Examine the Trace Information 12-11
plsql_trace_runs and plsql_trace_events 12-12
Lesson Agenda 12-14
Hierarchical Profiling Concepts 12-15
Using the PL/SQL Profiler 12-17
Understanding Raw Profiler Data 12-21
Using the Hierarchical Profiler Tables 12-22
Using DBMS_HPROF.ANALYZE 12-23
Using DBMS_HPROF.ANALYZE to Write to Hierarchical Profiler Tables 12-24
Sample Analyzer Output from the DBMSHP_RUNS Table 12-25
Sample Analyzer Output from the DBMSHP_FUNCTION_INFO Table 12-26
plshprof: A Simple HTML Report Generator 12-27
Using plshprof 12-28
Using the HTML Reports 12-31
Summary 12-35
Practice 12: Overview 12-36

13 Safeguarding Your Code Against SQL Injection Attacks
Objectives 13-2
Lesson Agenda 13-3
Understanding SQL Injection 13-4
Identifying Types of SQL Injection Attacks 13-5
SQL Injection: Example 13-6
Assessing Vulnerability 13-7
Avoidance Strategies Against SQL Injection 13-8
Protecting Against SQL Injection: Example 13-9
Lesson Agenda 13-10
Reducing the Attack Surface 13-11
Using Invoker’s Rights 13-12
Reducing Arbitrary Inputs 13-13
Lesson Agenda 13-14
Using Static SQL 13-15
Using Dynamic SQL 13-18
Lesson Agenda 13-19
Using Bind Arguments with Dynamic SQL 13-20

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

 xiii

Using Bind Arguments with Dynamic PL/SQL 13-21
Lesson Agenda 13-22
Understanding DBMS_ASSERT 13-23
Formatting Oracle Identifiers 13-24
Working with Identifiers in Dynamic SQL 13-25
Choosing a Verification Route 13-26
DBMS_ASSERT Guidelines 13-29
Writing Your Own Filters 13-33
Lesson Agenda 13-34
Using Bind Arguments 13-35
Handling Oracle Identifiers Carefully 13-36
Avoiding Privilege Escalation 13-38
Beware of Filter Parameters 13-39
Trapping and Handling Exceptions 13-40
Lesson Agenda 13-41
Coding Review and Testing Strategy 13-42
Reviewing Code 13-43
Running Static Code Analysis 13-44
Testing with Fuzzing Tools 13-45
Generating Test Cases 13-46
Summary 13-48
Practice 13: Overview 13-49

Appendix A: Practices and Solutions
Appendix B: Table Descriptions and Data
Appendix C: Using SQL Developer
Appendix D: Using SQL*Plus
Appendix E: Review of Jdeveloper

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Preface

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Preface - 3

Profile
Before You Begin This Course

Before you begin this course, you should have a thorough knowledge of SQL,
SQL*Plus, and have working experience on developing applications with PL/SQL.
The prerequisites are Oracle Database 11g: Develop PL/SQL Program Units and
Oracle Database 11g: Introduction to SQL.

How This Course Is Organized
Oracle Database 11g: Advanced PL/SQL is an instructor-led course featuring
lectures and hands-on exercises. Online demonstrations and written practice
sessions reinforce the concepts and skills.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Preface - 4

Related Publications
Oracle Publications

Title Part Number
Oracle Database Concepts 11g Release 1 (11.1) B28318-03
Oracle Database SQL Language Reference

11g Release 1 (11.1) B28286-02
Oracle Database PL/SQL Packages and Types Reference

11g Release 1 (11.1) B28419-02
Oracle Database PL/SQL Language Reference

11g Release 1 (11.1) B28370-02
Oracle Database Advanced Developer’s Guide

11g Release 1 (11.1) B28424-02
Oracle Database Object-Relational Developer’s Guide

11g Release 1 (11.1) B28371-02
Oracle Database Performance Tuning Guide

11g Release 1 (11.1) B28274-01

Additional Publications
• System release bulletins
• Installation and user’s guides
• read.me files
• International Oracle User’s Group (IOUG) articles
• Oracle Magazine

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Preface - 5

Typographic Conventions
The following table lists the typographical conventions that are used in text and code.
Typographical Conventions in Text

Convention Object or Term Example

Uppercase Commands, Use the SELECT command to view
functions, information stored in the LAST_NAME
column names, column of the EMPLOYEES table.
table names,
PL/SQL objects,
schemas

Lowercase, File names, where: role is the name of the role
italic syntax variables, to be created.

usernames,
passwords

Initial cap Trigger and Assign a When-Validate-Item trigger to
button names the ORD block.

Select Cancel.

Italic Books, names of For more information about the subject, see
courses and Oracle SQL Reference
manuals, and Manual
emphasized
words or phrases Do not save changes to the database.

Quotation marks Lesson module This subject is covered in Lesson 3,
titles referenced “Working with Objects.”
within a course

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Preface - 6

Typographic Conventions (continued)
Typographical Conventions in Code

Convention Object or Term Example

Uppercase Commands, SELECT employee_id
functions FROM employees;

Lowercase, Syntax variables CREATE ROLE role;
italic

Initial cap Forms, triggers Form module: ORD
Trigger level: S_ITEM.QUANTITY
item
Trigger name: When-Validate-Item
. . .

Lowercase Column names, . . .
table names, OG_ACTIVATE_LAYER
file names, (OG_GET_LAYER ('prod_pie_layer'))
PL/SQL objects . . .

SELECT last_name
FROM employees;

Bold Text that must CREATE USER scott
be entered by a IDENTIFIED BY tiger;
user

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Copyright © 2008, Oracle. All rights reserved.

Introduction

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 1 - 2

Copyright © 2008, Oracle. All rights reserved.

Course Objectives

After completing this course, you should be able to do the
following:
• Design PL/SQL packages and program units that execute

efficiently
• Write code to interface with external applications and the

operating system
• Create PL/SQL applications that use collections
• Write and tune PL/SQL code effectively to maximize

performance
• Implement a virtual private database with fine-grained

access control
• Write code to interface with large objects and use SecureFile

LOBs
• Perform code analysis to find program ambiguities, test,

trace, and profile PL/SQL code

Course Objectives
In this course, you learn how to use the advanced features of PL/SQL in order to design and tune
PL/SQL to interface with the database and other applications in the most efficient manner. Using the
advanced features of program design, packages, cursors, extended interface methods, and collections,
you learn how to write powerful PL/SQL programs. Programming efficiency, use of external C and
Java routines, and fine-grained access are covered in this course.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 1 - 3

Copyright © 2008, Oracle. All rights reserved.

Oracle Complete Solution

Network services

Databases Application
servers

Internet applications

Any
browser

Any
FTP client

Any
mail client

SQL

PL/SQL

Java

Clients

Presentation and
business logic

Business logic
and data

Sy
st

em
 m

an
ag

em
en

t D
evelopm

ent tools Other

Oracle Complete Solution
The Oracle Internet Platform is built on three core components:

• Browser-based clients to process presentation
• Application servers to execute business logic and serve presentation logic to browser-based

clients
• Databases to execute database-intensive business logic and serve data

Oracle offers a wide variety of the most advanced graphical user interface (GUI)–driven
development tools to build business applications, as well as a large suite of software applications for
many areas of business and industry. Stored procedures, functions, and packages can be written by
using SQL, PL/SQL, Java, C, and Net languages. This course concentrates on the advanced features
of PL/SQL.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 1 - 4

Copyright © 2008, Oracle. All rights reserved.

Lesson Agenda

• Previewing the course agenda
• Describing the development environments
• Using SQL Developer
• Using SQL*Plus
• Identifying the tables, data, and tools used in this course

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 1 - 5

Copyright © 2008, Oracle. All rights reserved.

Course Agenda

• Day 1
– Lesson 1: Introduction
– Lesson 2: PL/SQL Review
– Lesson 3: Designing PL/SQL Code
– Lesson 4: Working with Collections

• Day 2
– Lesson 4: Working with Collections
– Lesson 5: Using Advanced Interface Methods
– Lesson 6: Implementing Fine-Grained Access Control for VPD
– Lesson 7: Manipulating Large Objects
– Lesson 8: Administering SecureFile LOBs
– Lesson 9: Performance and Tuning

Agenda
In this three-day course, you start with a review of PL/SQL concepts before progressing into the new
and advanced topics. By the end of day one, you should have covered design considerations for your
program units, and how to use collections effectively.
On day two, you learn how to use advanced interface methods to call C and Java code from your
PL/SQL programs, how to implement and test fine-grained access control for virtual private
databases, how to manipulate large objects programmatically through PL/SQL, how to administer the
features of the new SecureFile LOB format of Database 11g, and how to tune PL/SQL code and deal
with memory issues.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 1 - 6

Copyright © 2008, Oracle. All rights reserved.

Course Agenda

• Day 3
– Lesson 10: Improving Performance with Caching
– Lesson 11: Analyzing PL/SQL Code
– Lesson 12: Profiling and Tracing PL/SQL Code
– Lesson 13: Safeguarding Your Code Against SQL Injection

Attacks

Agenda (continued)
On day three, you learn how to improve performance by using Oracle database 11g caching
techniques, how to write PL/SQL routines that analyze PL/SQL applications, how to profile and trace
PL/SQL code, and how to protect your code from SQL injection security attacks.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 1 - 7

Copyright © 2008, Oracle. All rights reserved.

Lesson Agenda

• Previewing the course agenda
• Describing the development environments
• Using SQL Developer
• Using SQL*Plus
• Identifying the tables, data, and tools used in this course

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 1 - 8

Copyright © 2008, Oracle. All rights reserved.

Development Environments: Overview

• Introduction to SQL Developer
• SQL*Plus

SQL Developer

PL/SQL Development Environments
Oracle provides several tools that can be used to write PL/SQL code. Some of the development tools
that are available for use in this course are:

• Oracle SQL Developer: A graphical tool
• Oracle SQL*Plus: A command-line application

Note: The code and screen examples presented in the course notes were generated from the output in
the SQL Developer environment.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 1 - 9

Copyright © 2008, Oracle. All rights reserved.

Lesson Agenda

• Previewing the course agenda
• Describing the development environments
• Using SQL Developer
• Using SQL*Plus
• Identifying the tables, data, and tools used in this course

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 1 - 10

Copyright © 2008, Oracle. All rights reserved.

What Is Oracle SQL Developer?

• Oracle SQL Developer is a free graphical tool that enhances
productivity and simplifies database development tasks.

• You can connect to any target Oracle database schema by
using the standard Oracle database authentication.

• You can use either SQL Developer or SQL*Plus in this
course.

SQL Developer

What Is Oracle SQL Developer?
Oracle SQL Developer is a free graphical tool designed to improve your productivity and simplify
the development of everyday database tasks. With just a few clicks, you can easily create and debug
stored procedures, test SQL statements, and view optimizer plans.
SQL Developer, the visual tool for database development, simplifies the following tasks:

• Browsing and managing database objects
• Executing SQL statements and scripts
• Editing and debugging PL/SQL statements
• Creating reports

You can connect to any target Oracle database schema by using the standard Oracle database
authentication. When connected, you can perform operations on the objects in the database.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 1 - 11

Copyright © 2008, Oracle. All rights reserved.

Starting SQL Developer and
Creating a Database Connection

1

2

3

4 5

Starting SQL Developer and Creating a Database Connection
To create a database connection, perform the following steps:

1. Double-click <your_path>\sqldeveloper\sqldeveloper.exe.
2. On the Connections tabbed page, right-click Connections and select New Database Connection.
3. Enter the connection name, username, password, host name, and SID for the database that you

want to connect to.
4. Click Test to make sure that the connection is set correctly.
5. Click Connect.

On the basic tabbed page, at the bottom, enter the following options:
• Hostname: Host system for the Oracle database
• Port: Listener port
• SID: Database name
• Service Name: Network service name for a remote database connection

If you select the Save Password check box, the password is saved to an XML file. After you close the
SQL Developer connection and open it again, you are not prompted for the password.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 1 - 12

Copyright © 2008, Oracle. All rights reserved.

Creating Schema Objects

• You can create any schema object in SQL Developer by
using one of the following methods:

– Executing a SQL statement in the SQL worksheet
– Using the context menu

• Edit the objects by using an edit dialog box or one of the
many context-sensitive menus

• View the DDL for adjustments such as creating a new object
or editing an existing schema object

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 1 - 13

Copyright © 2008, Oracle. All rights reserved.

Using the SQL Worksheet

• Use the SQL worksheet to enter and execute SQL, PL/SQL,
and SQL*Plus statements.

• Specify any actions that can be processed by the database
connection associated with the worksheet.

Click the Open SQL
Worksheet icon.

Select SQL
Worksheet from the
Tools menu, or

Using the SQL Worksheet
When you connect to a database, a SQL worksheet window for that connection automatically opens.
This example uses the HR_Connection. However, you use the OE_Connection and SH_Connection
later in this course.
You can use the SQL worksheet to enter and execute SQL, PL/SQL, and SQL*Plus statements. The
SQL worksheet supports some SQL*Plus statements. However, SQL*Plus statements that are not
supported by the SQL worksheet are ignored and not passed to the database.
You can specify any actions that can be processed by the database connection associated with the
worksheet, such as:

• Creating a table
• Inserting data
• Creating and editing a trigger
• Selecting data from a table
• Saving the selected data to a file

You can display a SQL worksheet by using one of the following options:
• Select Tools > SQL Worksheet.
• Click the Open SQL Worksheet icon.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 1 - 14

Copyright © 2008, Oracle. All rights reserved.

Using the SQL Worksheet

1

2

3

4

5

6

7

8

9

Using the SQL Worksheet (continued)
You may want to use the shortcut keys or icons to perform certain tasks, such as executing a SQL
statement, running a script, or viewing the history of the SQL statements that you executed. You can
use the SQL worksheet toolbar that contains icons to perform the following tasks:

1. Execute Statement: Executes the statement at the cursor in the Enter SQL Statement box. You
can use bind variables in the SQL statements. You cannot use substitution variables.

2. Run Script: Executes all statements in the Enter SQL Statement box by using the Script.
Runner. You can use substitution variables in the SQL statements. You cannot use bind
variables.

3. Commit: Writes changes to the database and ends the transaction.
4. Rollback: Discards changes to the database without writing them to the database, and ends the

transaction.
5. Cancel: Stops the execution of statements that are being executed.
6. SQL History: Displays a dialog box with information about the SQL statements that you

executed.
7. Execute Explain Plan: Generates the execution plan, which you can see by clicking the Explain

tab.
8. Autotrace: Generates trace information for the statement.
9. Clear: Erases the statement or statements in the Enter SQL Statement box.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 1 - 15

Copyright © 2008, Oracle. All rights reserved.

Executing SQL Statements

Use the Enter SQL Statement box to enter single or multiple
SQL statements.

Use the Enter SQL
Statement box to
enter single or
multiple SQL
statements.

View the results on
the Script Output
tabbed page.

Executing SQL Statements
In the SQL worksheet, you can use the Enter SQL Statement box to enter a single statement or
multiple SQL statements. For a single statement, the semicolon at the end is optional.
When you enter the statement, the SQL keywords are automatically highlighted. To execute a SQL
statement, ensure that your cursor is within the statement and click the Execute Statement icon.
Alternatively, you can press F9.
To execute multiple SQL statements and see the results, click the Run Script icon. Alternatively,
you can press F5.
In the example in the slide, because there are multiple SQL statements, the first statement is
terminated with a semicolon. The cursor is in the first statement, and therefore, when the statement is
executed, results corresponding to the first statement are displayed in the Results box.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 1 - 16

Copyright © 2008, Oracle. All rights reserved.

Executing Saved Script Files: Method 1

Right-click in the SQL
worksheet area, and then
select Open File from the
shortcut menu.

Select (or navigate
to) the script file that
you want to open.

Click Open.

To run the code, click
the Run Script (F5)
icon.

Executing Saved Script Files: Method 1
To open a script file and display the code in the SQL worksheet area, you can use one of the
following methods:

1. Right-click in the SQL worksheet area, and then select Open File from the shortcut menu. The
Open dialog box appears.

2. In the Open dialog box, select (or navigate to) the script file that you want to open.
3. Click Open. The code of the script file is displayed in the SQL worksheet area.
4. To run the code, click the Run Script (F5) icon on the SQL worksheet toolbar.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 1 - 17

Copyright © 2008, Oracle. All rights reserved.

Executing Saved SQL Scripts: Method 2

Use the @ command followed by the location
and name of the file that you want to
execute, and then click the Run Script icon.

The output from the
script is displayed on
the Script Output
tabbed page.

Executing Saved Script Files: Method 2
To run a saved SQL script, follow these steps:

1. In the Enter SQL Statement box, use the @ command followed by the location and name of the
file that you want to run.

2. Click the Run Script icon.
The results from running the file are displayed on the Script Output tabbed page. You can also save
the script output by clicking the Save icon on the Script Output tabbed page. The Windows File Save
dialog box appears and you can identify a name and location for your file.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 1 - 18

Copyright © 2008, Oracle. All rights reserved.

Creating an Anonymous Block

Create an anonymous block and display the output of the
DBMS_OUTPUT package.

Creating an Anonymous Block
You can create an anonymous block (a unit of code without a name) and display the output of the
DBMS_OUTPUT package. To create an anonymous block and view the results, perform the following
steps:

1. Enter the PL/SQL code in the Enter SQL Statement box.
2. Click the DBMS Output tab. Click the Enable DBMS Output icon to set the server output ON.
3. Click the Execute Statement icon above the Enter SQL Statement box. Click the DBMS

Output tab to see the results.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 1 - 19

Copyright © 2008, Oracle. All rights reserved.

Editing the PL/SQL Code

Use the full-featured editor for PL/SQL program units.

Editing the PL/SQL Code
You may want to make changes to your PL/SQL code. SQL Developer includes a
full-featured editor for PL/SQL program units. It includes customizable PL/SQL syntax highlighting
in addition to common editor functions, such as:

• Bookmarks
• Code Completion
• Code Folding
• Search and Replace

To edit the PL/SQL code, click the object name in the Connections Navigator, and then click the
Edit icon. Optionally, double-click the object name to invoke the Object Definition page with its tabs
and the Edit page. You can update only if you are on the Edit tabbed page.
The slide shows the Code Insight feature. For example, if you enter DBMS_OUTPUT, and then press
Ctrl + Spacebar, you can select from a list of members of that package. Note that, by default, Code
Insight is invoked automatically if you pause after entering a period (“.”) for more than one second.
When using the Code Editor to edit PL/SQL code, you can use Compile or Compile for Debug. Use
the Compile for Debug option if you plan on using the SQL Developer Debugger. This option adds
some debugging directives.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 1 - 20

Copyright © 2008, Oracle. All rights reserved.

Saving SQL Scripts

Click the Save icon to
save your SQL
statement to a file.

The contents of the
saved file are visible
and editable in your
SQL worksheet
window.

Enter a file name and
identify a location to
save the file in, and
then click Save.

Saving SQL Scripts
You can save your SQL statements from the SQL worksheet into a text file. To save the contents of
the Enter SQL Statement box, perform the following steps:

1. Click the Save icon or use the File > Save menu option.
2. In the Windows Save dialog box, enter a file name and the location where you want to save the

file.
3. Click Save.

After you save the contents to a file, the Enter SQL Statement box displays a tabbed page of your file
contents. You can have multiple files open simultaneously. Each file is displayed as a tabbed page.
Script Pathing
You can select a default path to look for scripts and to save scripts. Under Tools > Preferences >
Database > Worksheet Parameters, enter a value in the Select default path to look for scripts
field.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 1 - 21

Copyright © 2008, Oracle. All rights reserved.

Debugging Procedures and Functions

• Use SQL Developer to debug PL/SQL functions and
procedures.

• Use the Compile for Debug option to perform a PL/SQL
compilation so that the procedure can be debugged.

• Use the Debug menu options to set breakpoints, and to
perform step into and step
over tasks.

Debugging Procedures and Functions
You can use the SQL Developer Debugger to debug PL/SQL procedures and functions. Using the
Debug menu options, you can perform the following debugging tasks:

• Find Execution Point goes to the next execution point.
• Resume continues execution.
• Step Over bypasses the next method and goes to the next statement after the method.
• Step Into goes to the first statement in the next method.
• Step Out leaves the current method and goes to the next statement.
• Step to End of Method goes to the last statement of the current method.
• Pause halts execution but does not exit, thus allowing you to resume execution.
• Terminate halts and exits the execution. You cannot resume execution from this point; instead,

to start running or debugging from the beginning of the function or procedure, click the Run or
Debug icon on the Source tab toolbar.

• Garbage Collection removes invalid objects from the cache in favor of the more frequently
accessed and more valid objects.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 1 - 22

Copyright © 2008, Oracle. All rights reserved.

Lesson Agenda

• Previewing the course agenda
• Describing the development environments
• Using SQL Developer
• Using SQL*Plus
• Identifying the tables, data, and tools used in this course

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 1 - 23

Copyright © 2008, Oracle. All rights reserved.

Using SQL*Plus

• You can invoke the SQL*Plus command-line interface from
SQL Developer.

• Close all SQL worksheets to enable the SQL*Plus menu
option.

Provide the
location of the
sqlplus.exe

file only for
the first time
you invoke
SQL*Plus.

Using SQL*Plus
The SQL worksheet supports most of the SQL*Plus statements. SQL*Plus statements must be
interpreted by the SQL worksheet before being passed to the database; any SQL*Plus statements that
are not supported by the SQL worksheet are ignored and not passed to the database. To display the
SQL*Plus command window, from the Tools menu, select SQL*Plus. To use the SQL*Plus
command-line interface within SQL Developer, the system on which you are using SQL Developer
must have an Oracle home directory or folder, with a SQL*Plus executable under that location. If the
location of the SQL*Plus executable is not already stored in your SQL Developer preferences, you
are asked to specify its location.
For example, some of the SQL*Plus statements that are not supported by SQL worksheet are:
• append
• archive
• attribute
• break

For a complete list of SQL*Plus statements that are either supported or not supported by the SQL
worksheet, refer to the “SQL*Plus Statements Supported and Not Supported in SQL Worksheet”
topic in the SQL Developer online Help.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 1 - 24

Copyright © 2008, Oracle. All rights reserved.

Coding PL/SQL in SQL*Plus

Coding PL/SQL in SQL*Plus
You can also invoke Oracle SQL*Plus from the sqlplus.exe executable that is located in your
Oracle home //bin directory. SQL*Plus is a command-line application that enables you to submit
SQL statements and PL/SQL blocks for execution, and receive the results in an application or
command window.
SQL*Plus is:

• Shipped with the database
• Installed on a client and on the database server system
• Accessed from an icon or the command line

When coding PL/SQL subprograms by using SQL*Plus, remember the following:
• You create subprograms by using the CREATE SQL statement.
• You execute subprograms by using either an anonymous PL/SQL block or the EXECUTE

command.
• If you use the DBMS_OUTPUT package procedures to print text to the screen, you must first

execute the SET SERVEROUTPUT ON command in your session.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 1 - 25

Copyright © 2008, Oracle. All rights reserved.

Lesson Agenda

• Previewing the course agenda
• Describing the development environments
• Using SQL Developer
• Using SQL*Plus
• Identifying the tables, data, and tools used in this course

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 1 - 26

Copyright © 2008, Oracle. All rights reserved.

Tables Used in This Course

• The sample schemas used are:
– Order Entry (OE) schema
– Human Resources (HR) schema

• Primarily, the OE schema is used.
• The OE schema user can read data in the HR schema tables.
• Appendix B contains more information about the sample

schemas.

Tables Used in This Course
The sample company portrayed by Oracle Database Sample Schemas operates worldwide to fulfill
orders for several different products. The company has several divisions:

• The Human Resources division tracks information about the employees and the facilities of the
company.

• The Order Entry division tracks product inventories and sales of the company’s products through
various channels.

• The Sales History division tracks business statistics to facilitate business decisions. Although not
used in this course, the SH schema is part of the “Example” sample schemas shipped with the
database.

Each of these divisions is represented by a schema.
This course primarily uses the Order Entry (OE) sample schema.
Note: More details about the sample schema are found in Appendix B.
All scripts necessary to create the OE schema reside in the
$ORACLE_HOME/demo/schema/order_entry folder.
All scripts necessary to create the HR schema reside in the
$ORACLE_HOME/demo/schema/human_resources folder.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 1 - 27

Copyright © 2008, Oracle. All rights reserved.

The Order Entry Schema
PROMOTIONS

promo_id
promo_name

ORDERS
order_id

order_date
order_mode
customer_id
order_status
order_total

sales_rep_id
promotion_id

CATEGORIES_
TAB

category_id
category_name

category_description
parent_category_id

OE

ORDER_ITEMS
order_id

line_item_id
product_id
unit_price
quantity

PRODUCT_
INFORMATION

product_id
product_name

product_description
category_id

weight_class
warranty_period

supplier_id
product_status

list_price
min_price

catalog_url

PRODUCT_
DESCRIPTIONS

product_id
language_id

translated_name
translated_description

INVENTORIES
product_id

warehouse_id
quantity_on_hand

CUSTOMERS
customer_id

customer_first_name
customer_last_name

cust_address_typ

phone_numbers
nls_language
nls_territory
credit_limit
cust_email

account_mgr_id
cust_geo_location

date_of_birth
marital_status

gender
income_level

street_address
postal_code

city
state_province

country_id

WAREHOUSES
warehouse_id

warehouse_spec
warehouse_name

location_id
wh_geo_location

The Order Entry (OE) Schema
The company sells several categories of products, including computer hardware and software, music,
clothing, and tools. The company maintains product information that includes product identification
numbers, the category into which the product falls, the weight group (for shipping purposes), the
warranty period if applicable, the supplier, the status of the product, a list price, a minimum price at
which a product will be sold, and a URL address for manufacturer information.
Inventory information is also recorded for all products, including the warehouse where the product is
available and the quantity on hand. Because products are sold worldwide, the company maintains the
names of the products and their descriptions in several different languages.
The company maintains warehouses in several locations to facilitate filling customer orders. Each
warehouse has a warehouse identification number, name, and location identification number.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 1 - 28

The Order Entry (OE) Schema (continued)
Customer information is tracked in some detail. Each customer is assigned an identification number.
Customer records include name, street address, city or province, country, phone numbers (up to five
phone numbers for each customer), and postal code. Some customers order through the Internet, so
email addresses are also recorded. Because of language differences among customers, the company
records the NLS language and territory of each customer. The company places a credit limit on its
customers to limit the amount for which they can purchase at one time. Some customers have
account managers, whom the company monitors. It keeps track of a customer’s phone number. At
present, you do not know how many phone numbers a customer might have, but you try to keep track
of all of them. Because of the language differences among our customers, you also identify the
language and territory of each customer.
When a customer places an order, the company tracks the date of the order, the mode of the order,
status, shipping mode, total amount of the order, and the sales representative who helped place the
order. This may be the same individual as the account manager for a customer, it may be someone
else, or, in the case of an order over the Internet, the sales representative is not recorded. In addition
to the order information, the company also tracks the number of items ordered, the unit price, and the
products ordered.
For each country in which it does business, the company records the country name, currency symbol,
currency name, and the region where the country resides geographically. This data is useful to
interact with customers who are living in different geographic regions of the world.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 1 - 29

Copyright © 2008, Oracle. All rights reserved.

The Human Resources Schema

The Human Resources (HR) Schema
In the human resources records, each employee has an identification number, email address, job
identification code, salary, and manager. Some employees earn a commission in addition to their
salary.
The company also tracks information about the jobs within the organization. Each job has an
identification code, job title, and a minimum and maximum salary range for the job. Some employees
have been with the company for a long time and have held different positions within the company.
When an employee switches jobs, the company records the start date and end date of the former job,
the job identification number, and the department.
The sample company is regionally diverse, so it tracks the locations of not only its warehouses but
also its departments. Each company employee is assigned to a department. Each department is
identified by a unique department number and a short name. Each department is associated with one
location. Each location has a full address that includes the street address, postal code, city, state or
province, and country code.
For each location where it has facilities, the company records the country name, currency symbol,
currency name, and the region where the country resides geographically.
Note: For more information about the “Example” sample schemas, refer to Appendix B.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 1 - 30

Copyright © 2008, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Describe the goals of the course
• Identify the environments that can be used in this course
• Describe the database schema and tables that are used in

the course
• List the available documentation and resources

Summary
In this lesson, you were introduced to the goals of the course, the SQL Developer and SQL*Plus
environments used in the course, and the database schema and tables used in the lectures and lab
practices.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 1 - 31

Copyright © 2008, Oracle. All rights reserved.

Practice 1 Overview: Getting Started

This practice covers the following topics:
• Reviewing the available SQL Developer resources
• Starting SQL Developer and creating new database

connections and browsing the HR, OE, and SH tables
• Setting some SQL Developer preferences
• Executing SQL statements and an anonymous PL/SQL block

by using SQL worksheet
• Accessing and bookmarking the Oracle Database 11g

documentation and other useful Web sites

Practice 1: Overview
In this practice, you use SQL Developer to execute SQL statements for examining the data in the
“Example” sample schemas: HR, OE, and SH. You also create a simple anonymous block. Optionally,
you can experiment by creating and executing the PL/SQL code in SQL*Plus.
Note: All written practices use SQL Developer as the development environment. Although it is
recommended that you use SQL Developer, you can also use the SQL*Plus environment that is
available in this course.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 1 - 32

Practice 1
This is the first of many practices in this course. The solutions (if you require them) can be found in
Appendix A. Practices are intended to cover most of the topics presented in the corresponding
lesson.
In this practice, you review the available SQL Developer resources. You also learn about the user
account that you use in this course. You start SQL Developer, create a new database connection, and
browse your SH, HR, and OE tables. You also set some SQL Developer preferences, execute SQL
statements, access and bookmark the Oracle Database 11g documentation and other useful Web sites
that you can use in this course.
Identifying the Available SQL Developer Resources

1. Familiarize yourself with Oracle SQL Developer as needed by referring to Appendix C: Using
SQL Developer.

2. Access the SQL Developer Home page that is available online at:
http://www.oracle.com/technology/products/database/sql_developer/index.html

3. Bookmark the page for easier future access.
4. Access the SQL Developer tutorial that is available online at:

http://st-curriculum.oracle.com/tutorial/SQLDeveloper/index.htm
5. Preview and experiment with the available links and demonstrations in the tutorial as needed,

especially the Creating a Database Connection and Accessing Data links.
Creating and Using the New SQL Developer Database Connections

6. Start SQL Developer.
7. Create a database connection to SH using the following information:

a. Connection Name: sh_connection
b. Username: sh
c. Password: sh
d. Hostname: localhost
e. Port: 1521
f. SID: orcl

8. Test the new connection. If the Status is Success, connect to the database using this new
connection.

a. Double-click the sh_connection icon on the Connections tabbed page.
b. Click the Test button in the New/Select Database Connection window. If the status is

Success, click the Connect button.
9. Create a new database connection named hr_connection.

a. Right-click the sh_connection connection in the Object Navigation tree, and select the
Properties menu option.

b. Enter hr_connection as the connection name and hr as the username and password,
and click Save. This creates the new connection.

c. Repeat step 8 to test the new hr_connection connection.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 1 - 33

Practice 1 (continued)
10. Repeat step 9 to create and test a new database connection named oe_connection. Enter

oe as the database connection username and password.
11. Repeat step 9 to create and test a new database connection named sys_connection. Enter

sys as the database connection username, oracle as the password, and SYSDBA as the role.
Browsing the HR, SH, and OE Schema Tables

12. Browse the structure of the EMPLOYEES table.
a. Expand the hr_connection connection by clicking the plus symbol next to it.
b. Expand the Tables icon by clicking the plus symbol next to it.
c. Display the structure of the EMPLOYEES table.

13. Browse the EMPLOYEES table and display its data.
14. Use the SQL worksheet to select the last names and salaries of all employees whose annual

income is greater than $10,000. Use both the Execute Statement (F9) and the Run Script (F5)
icons to execute the SELECT statement. Review the results of both methods of executing the
SELECT statements on the appropriate tabs.
Note: Take a few minutes to familiarize yourself with the data, or consult “Appendix B, Table
Descriptions,” which provides the description and data for all tables in the HR, SH, and OE
schemas that you will use in this course.

15. Create and execute a simple anonymous block that outputs “Hello World.”
a. Enable SET SERVEROUTPUT ON to display the output of the DBMS_OUTPUT package

statements.
b. Use the SQL worksheet area to enter the code for your anonymous block.
c. Click the Run Script icon (F5) to run the anonymous block.

16. Browse the structure of the SALES table in the SH Schema connection and display its data.
a. Double-click the sh_connection connection.
b. Expand the Tables icon by clicking the plus symbol next to it.
c. Display the structure of the SALES table.
d. Browse the SALES table and display its data.

17. Browse the structure of the ORDERS table in the OE Schema and display its data.
a. Double-click the oe_connection connection.
b. Expand the Tables icon by clicking the plus symbol next to it.
c. Display the structure of the ORDERS table.
d. Browse the ORDERS table and display its data.

Accessing the Oracle Database 11g Release 1 Online Documentation Library
18. Access the Oracle Database 11g Release documentation Web page at:

http://www.oracle.com/pls/db111/homepage
19. Bookmark the page for easier future access.
20. Display the complete list of books available for Oracle Database 11g, Release 1.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 1 - 34

Practice 1 (continued)
Accessing the Oracle Database 11g Release 1 Online Documentation Library (continued)

21. Make a note of the following documentation references that you will use in this course as
needed:
a. Advanced Application Developer’s Guide
b. New Features Guide
c. PL/SQL Language Reference
d. Oracle Database Reference
e. Oracle Database Concepts
f. SQL Developer User’s Guide
g. SQL Language Reference Guide
h. SQL*Plus User’s Guide and Reference

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Copyright © 2008, Oracle. All rights reserved.

PL/SQL Programming Concepts: Review

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 2 - 2

Copyright © 2008, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:
• Describe PL/SQL basics
• List restrictions on calling functions from SQL expressions
• Identify how explicit cursors are processed
• Handle exceptions
• Use the raise_application_error procedure
• Manage dependencies
• Use Oracle-supplied packages

Objectives
PL/SQL supports various programming constructs. This lesson reviews the basic concept of PL/SQL
programming. This lesson also reviews how to:

• Create subprograms
• Use cursors
• Handle exceptions
• Identify predefined Oracle server errors
• Manage dependencies

A quiz at the end of the lesson will assess your knowledge of PL/SQL.
Note: The quiz is optional. Solutions to the quiz are provided in Appendix A.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 2 - 3

Copyright © 2008, Oracle. All rights reserved.

Lesson Agenda

• Describing PL/SQL basics
• Listing restrictions on calling functions from SQL expressions
• Reviewing PL/SQL packages
• Identifying how explicit cursors are processed
• Handling exceptions
• Using the raise_application_error procedure
• Managing dependencies
• Using Oracle-supplied packages

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 2 - 4

Copyright © 2008, Oracle. All rights reserved.

DECLARE

BEGIN

EXCEPTION

END;

PL/SQL Block Structure

<header>
IS|AS

BEGIN

EXCEPTION

END;

Anonymous
PL/SQL block

Stored
program unit

PL/SQL Block Structure
An anonymous PL/SQL block structure consists of an optional DECLARE section, a mandatory
BEGIN-END block, and an optional EXCEPTION section before the END statement of the main
block.
A stored program unit has a mandatory header section. This section defines whether the program unit
is a function, procedure, or a package, and contains the optional argument list and their modes. A
stored program unit also has the other sections mentioned for the anonymous PL/SQL block.
However, a stored program unit does not have an optional DECLARE section, but it does contain an
IS | AS section that is mandatory and acts the same as the DECLARE section in an anonymous
block.
Every PL/SQL construct is made from one or more blocks. These blocks can be entirely separate or
nested within one another. Therefore, one block can represent a small part of another block, which in
turn can be part of the whole unit of code.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 2 - 5

Copyright © 2008, Oracle. All rights reserved.

Naming Conventions

Advantages of proper naming conventions:
• Easier to read
• Understandable
• Gives information about the functionality
• Easier to debug
• Ensures consistency
• Can improve performance

Naming Conventions
A proper naming convention makes the code easier to read and more understandable. It helps you
understand the functionality of the identifier. If the code is written using proper naming conventions,
you can easily find an error and rectify it. Most importantly, it ensures consistency among the code
written by different developers.
The following table shows the naming conventions followed in this course:

typ_customertyp_prefixType

cur_orderscur_prefixCursor

e_check_credit_limite_prefixException

p_cust_idp_prefixParameter

c_taxc_prefixConstant

v_product_namev_prefixVariable

ExampleConventionIdentifier

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 2 - 6

Copyright © 2008, Oracle. All rights reserved.

Procedures

A procedure is:
• A named PL/SQL block that performs a sequence of actions

and optionally returns a value or values
• Stored in the database as a schema object
• Used to promote reusability and maintainability

CREATE [OR REPLACE] PROCEDURE procedure_name
[(parameter1 [mode] datatype1,
parameter2 [mode] datatype2, ...)]

IS|AS
[local_variable_declarations; …]

BEGIN
-- actions;

END [procedure_name];

Procedures
A procedure is a named PL/SQL block that can accept parameters (sometimes referred to as
arguments). Generally, you use a procedure to perform an action. A procedure is compiled and stored
in the database as a schema object. Procedures promote reusability and maintainability.
Parameters are used to transfer data values to and from the calling environment and the procedure (or
subprogram). Parameters are declared in the subprogram header, after the name and before the
declaration section for local variables.
Parameters are subject to one of the three parameter-passing modes: IN, OUT, or IN OUT.

• An IN parameter passes a constant value from the calling environment into the procedure.
• An OUT parameter passes a value from the procedure to the calling environment.
• An IN OUT parameter passes a value from the calling environment to the procedure and a

possibly different value from the procedure back to the calling environment using the same
parameter.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 2 - 7

Copyright © 2008, Oracle. All rights reserved.

Procedure: Example

CREATE OR REPLACE PROCEDURE get_avg_order
(p_cust_id NUMBER, p_cust_last_name VARCHAR2,
p_order_tot NUMBER)
IS

v_cust_ID customers.customer_id%type;
v_cust_name customers.cust_last_name%type;
v_avg_order NUMBER;

BEGIN
SELECT customers.customer_id, customers.cust_last_name,
AVG(orders.order_total)
INTO v_cust_id, v_cust_name, v_avg_order
FROM CUSTOMERS, ORDERS
WHERE customers.customer_id=orders.customer_id
GROUP BY customers.customer_id, customers.cust_last_name;
END;
/

Procedure: Example
This reusable procedure has a parameter with a SELECT statement for getting average order totals
for whatever customer value is passed in.
Note: If a developer drops a procedure, and then re-creates it, all applicable grants to execute the
procedure are gone. Alternatively, the OR REPLACE command removes the old procedure and re-
creates it but leaves all the grants against the said procedure in place. Thus, the OR REPLACE
command is recommended wherever there is an existing procedure, function, or package; not merely
for convenience, but also to protect granted privileges. If you grant object privileges, these privileges
remain after you re-create the subprogram with the OR REPLACE option; otherwise, the privileges
are not preserved.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 2 - 8

Copyright © 2008, Oracle. All rights reserved.

Functions

A function is:
• A named block that must return a value
• Stored in the database as a schema object
• Called as part of an expression or used to provide a

parameter value

CREATE [OR REPLACE] FUNCTION function_name
[(parameter1 [mode1] datatype1, ...)]
RETURN datatype IS|AS
[local_variable_declarations; …]
BEGIN
-- actions;
RETURN expression;

END [function_name];

Functions
A function is a named PL/SQL block that can accept parameters, be invoked, and return a value. In
general, you use a function to compute a value. Functions and procedures are structured alike. A
function must return a value to the calling environment, whereas a procedure returns zero or more
values to its calling environment. Like a procedure, a function has a header, a declarative section, an
executable section, and an optional exception-handling section. A function must have a RETURN
clause in the header and at least one RETURN statement in the executable section, and must return a
value in each exception handler to avoid the “ORA-06503: PL/SQL: Function returned without
value” error.
Functions can be stored in the database as schema objects for repeated execution. A function that is
stored in the database is referred to as a stored function. Functions can also be created on client-side
applications.
Functions promote reusability and maintainability. When validated, they can be used in any number
of applications. If the processing requirements change, only the function needs to be updated.
A function may also be called as part of a SQL expression or as part of a PL/SQL expression. In the
context of a SQL expression, a function must obey specific rules to control side effects. In a PL/SQL
expression, the function identifier acts like a variable whose value depends on the parameters passed
to it.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 2 - 9

Copyright © 2008, Oracle. All rights reserved.

Function: Example

• Create the function:

• Invoke the function as an expression or as a parameter
value:

CREATE OR REPLACE FUNCTION get_credit
(v_id customers.customer_id%TYPE) RETURN NUMBER IS
v_credit customers.credit_limit%TYPE := 0;

BEGIN
SELECT credit_limit
INTO v_credit
FROM customers
WHERE customer_id = v_id;
RETURN (v_credit);

END get_credit;
/

EXECUTE dbms_output.put_line(get_credit(101))

Function: Example
The get_credit function is created with a single input parameter and returns the credit limit as a
number, as shown in the first code box in the slide. The get_credit function follows the common
programming practice of assigning a returning value to a local variable and uses a single RETURN
statement in the executable section of the code to return the value stored in the local variable. If your
function has an exception section, it may also contain a RETURN statement.
Invoke a function as part of a PL/SQL expression, because the function returns a value to the calling
environment. The second code box uses the SQL*Plus EXECUTE command to call the
DBMS_OUTPUT.PUT_LINE procedure whose argument is the return value from the get_credit
function. In this case, DBMS_OUTPUT.PUT_LINE is invoked first; it calls get_credit to
calculate the credit limit of the customer with ID 101. The credit_limit value returned is
supplied as the value of the DBMS_OUTPUT.PUT_LINE parameter, which then displays the result
(if you have executed SET SERVEROUTPUT ON).
Note: The %TYPE attribute casts the data type to the type defined for the column in the table
identified. You can use the %TYPE attribute as a data type specifier when declaring constants,
variables, fields, and parameters.
A function must always return a value. The example does not return a value if a row is not found for
a given ID. Ideally, create an exception handler to return a value as well.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 2 - 10

Copyright © 2008, Oracle. All rights reserved.

Ways to Execute Functions
• Invoke as part of a PL/SQL expression

– Using a host variable to obtain the result:

– Using a local variable to obtain the result:

• Use as a parameter to another subprogram

• Use in a SQL statement (subject to restrictions)
EXECUTE dbms_output.put_line(get_credit(101))

SELECT get_credit(customer_id) FROM customers;

VARIABLE v_credit NUMBER
EXECUTE :v_credit := get_credit(101)

DECLARE v_credit customers.credit_limit%type;
BEGIN
v_credit := get_credit(101); ...

END;

Ways to Execute Functions
If functions are designed thoughtfully, they can be powerful constructs. Functions can be invoked in
the following ways:

• As part of PL/SQL expressions: You can use host or local variables to hold the returned value
from a function. The first example in the slide uses a host variable and the second example uses
a local variable in an anonymous block.

• As a parameter to another subprogram: The third example in the slide demonstrates this
usage. The get_credit function, with all its arguments, is nested in the parameter required
by the DBMS_OUTPUT.PUT_LINE procedure. This comes from the concept of nesting
functions, as discussed in the Oracle Database 10g: SQL Fundamentals I course.

• As an expression in a SQL statement: The last example shows how a function can be used as a
single-row function in a SQL statement.

Note: The restrictions and guidelines that apply to functions when used in a SQL statement are
discussed in the next few pages.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 2 - 11

Copyright © 2008, Oracle. All rights reserved.

Lesson Agenda

• Describing PL/SQL basics
• Listing restrictions on calling functions from SQL expressions
• Reviewing PL/SQL packages
• Identifying how explicit cursors are processed
• Handling exceptions
• Using the raise_application_error procedure
• Managing dependencies
• Using Oracle-supplied packages

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 2 - 12

Copyright © 2008, Oracle. All rights reserved.

Restrictions on Calling Functions
from SQL Expressions

• User-defined functions that are callable from SQL
expressions must:

– Be stored in the database
– Accept only IN parameters with valid SQL data types, not

PL/SQL-specific types
– Return valid SQL data types, not PL/SQL-specific types

• When calling functions in SQL statements:
– Parameters must be specified with positional notation
– You must own the function or have the EXECUTE privilege

Restrictions on Calling Functions from SQL Expressions
The user-defined PL/SQL functions that are callable from SQL expressions must meet the following
requirements:

• The function must be stored in the database.
• The function parameters must be input parameters and should be valid SQL data types.
• The functions must return data types that are valid SQL data types. They cannot be PL/SQL-

specific data types such as BOOLEAN, RECORD, or TABLE. The same restriction applies to the
parameters of the function.

The following restrictions apply when calling a function in a SQL statement:
• Parameters must use positional notation. Named notation is not supported.
• You must own or have the EXECUTE privilege on the function.

Other restrictions on a user-defined function include the following:
• It cannot be called from the CHECK constraint clause of a CREATE TABLE or ALTER TABLE

statement.
• It cannot be used to specify a default value for a column.

Note: Only stored functions are callable from SQL statements. Stored procedures cannot be called
unless invoked from a function that meets the preceding requirements.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 2 - 13

Copyright © 2008, Oracle. All rights reserved.

Restrictions on Calling Functions
from SQL Expressions

Functions called from:
• A SELECT statement cannot contain DML statements
• An UPDATE or DELETE statement on a table T cannot query

or contain DML on the same table T
• SQL statements cannot end transactions (that is, cannot

execute COMMIT or ROLLBACK operations)
Note: Calls to subprograms that break these restrictions are
also not allowed in the function.

Restrictions on Calling Functions from SQL Expressions (continued)
To execute a SQL statement that calls a stored function, the Oracle server must know whether the
function is free of specific side effects. Side effects are unacceptable changes to database tables.
Additional restrictions also apply when a function is called in expressions of SQL statements. In
particular, when a function is called from:

• A SELECT statement or a parallel UPDATE or DELETE statement, the function cannot modify a
database table, unless the modification occurs in an autonomous transaction

• An INSERT... SELECT (but not an INSERT... VALUES), an UPDATE, or a DELETE statement,
the function cannot query or modify a database table that was modified by that statement

• A SELECT, INSERT, UPDATE, or DELETE statement, the function cannot execute directly or
indirectly through another subprogram or through a SQL transaction control statement such as:

- A COMMIT or ROLLBACK statement
- A session control statement (such as SET ROLE)
- A system control statement (such as ALTER SYSTEM)
- Any data definition language (DDL) statements (such as CREATE), because they are

followed by an automatic commit
Note: The function can execute a transaction control statement if the transaction being controlled is
autonomous.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 2 - 14

Copyright © 2008, Oracle. All rights reserved.

Lesson Agenda

• Describing PL/SQL basics
• Listing restrictions on calling functions from SQL expressions
• Reviewing PL/SQL packages
• Identifying how explicit cursors are processed
• Handling exceptions
• Using the raise_application_error procedure
• Managing dependencies
• Using Oracle-supplied packages

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 2 - 15

Copyright © 2008, Oracle. All rights reserved.

PL/SQL Packages: Review

PL/SQL packages:
• Group logically related components:

– PL/SQL types
– Variables, data structures, and exceptions
– Subprograms: procedures and functions

• Consist of two parts:
– A specification
– A body

• Enable the Oracle server to read multiple objects into
memory simultaneously

PL/SQL Packages: Review
PL/SQL packages enable you to bundle related PL/SQL types, variables, data structures, exceptions,
and subprograms into one container. For example, an Order Entry package can contain procedures
for adding and deleting customers and orders, functions for calculating annual sales, and credit limit
variables.
A package usually consists of two parts that are stored separately in the database:

• A specification
• A body (optional)

The package itself cannot be called, parameterized, or nested. After writing and compiling, the
contents can be shared with many applications.
When a PL/SQL-packaged construct is referenced for the first time, the whole package is loaded into
memory. However, subsequent access to constructs in the same package does not require disk I/O.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 2 - 16

Copyright © 2008, Oracle. All rights reserved.

Components of a PL/SQL Package

Package
specification

Package
body

Procedure A declaration;

variable

Procedure A definition

BEGIN
…
END;

Procedure B definition …

variable

variable

Public

Private

Components of a PL/SQL Package
You create a package in two parts:

• The package specification is the interface to your applications. It declares the public types,
variables, constants, exceptions, cursors, and subprograms that are available for use. The
package specification may also include pragmas, which are directives to the compiler.

• The package body defines its own subprograms and must fully implement the subprograms that
are declared in the specification part. The package body may also define PL/SQL constructs,
such as object types, variables, constants, exceptions, and cursors.

Public components are declared in the package specification. The specification defines a public API
for users of the package features and functionality. That is, public components can be referenced
from any Oracle server environment that is external to the package.
Private components are placed in the package body but not referenced in the specification and can be
referenced only by other constructs within the same package body. Alternatively, private components
can reference the public components of the package.
Note: If a package specification does not contain subprogram declarations, there is no requirement
for a package body.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 2 - 17

Copyright © 2008, Oracle. All rights reserved.

Creating the Package Specification

Syntax:

• The OR REPLACE option drops and re-creates the package
specification.

• Variables declared in the package specification are initialized
to NULL by default.

• All constructs declared in a package specification are visible
to users who are granted privileges on the package.

CREATE [OR REPLACE] PACKAGE package_name IS|AS
public type and variable declarations
subprogram specifications

END [package_name];

Creating the Package Specification
• To create packages, you declare all public constructs within the package specification.

- Specify the OR REPLACE option if overwriting an existing package specification.
- Initialize a variable with a constant value or formula within the declaration, if required;

otherwise, the variable is initialized implicitly to NULL.
• The following are the definitions of items in the package syntax:

- package_name specifies a name for the package that must be unique among objects
within the owning schema. Including the package name after the END keyword is optional.

- public type and variable declarations declares public variables, constants,
cursors, exceptions, user-defined types, and subtypes.

- subprogram specifications specifies the public procedure or function
declarations.

Note: The package specification should contain procedure and function signatures terminated by a
semicolon. The signature is every thing above IS|AS keywords. The implementation of a procedure
or function that is declared in a package specification is done in the package body.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 2 - 18

Copyright © 2008, Oracle. All rights reserved.

Creating the Package Body

Syntax:

• The OR REPLACE option drops and re-creates the package
body.

• Identifiers defined in the package body are private and not
visible outside the package body.

• All private constructs must be declared before they are
referenced.

• Public constructs are visible to the package body.

CREATE [OR REPLACE] PACKAGE BODY package_name IS|AS
private type and variable declarations
subprogram bodies

[BEGIN initialization statements]
END [package_name];

Creating the Package Body
Create a package body to define and implement all public subprograms and the supporting private
constructs. When creating a package body, perform the following:

• Specify the OR REPLACE option to overwrite a package body.
• Define the subprograms in an appropriate order. The basic principle is that you must declare a

variable or subprogram before it can be referenced by other components in the same package
body. It is common to see all private variables and subprograms defined first and the public
subprograms defined last in the package body.

• The package body must complete the implementation for all procedures or functions declared in
the package specification.

The following are the definitions of items in the package body syntax:
• package_name specifies a name for the package that must be the same as its package

specification. Using the package name after the END keyword is optional.
• private type and variable declarations declares private variables, constants,

cursors, exceptions, user-defined types, and subtypes.
• subprogram bodies specifies the full implementation of any private and/or public

procedures or functions.
• [BEGIN initialization statements] is an optional block of initialization code that

executes when the package is first referenced.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 2 - 19

Copyright © 2008, Oracle. All rights reserved.

Lesson Agenda

• Describing PL/SQL basics
• Listing restrictions on calling functions from SQL expressions
• Reviewing PL/SQL packages
• Identifying how explicit cursors are processed
• Handling exceptions
• Using the raise_application_error procedure
• Managing dependencies
• Using Oracle-supplied packages

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 2 - 20

Copyright © 2008, Oracle. All rights reserved.

Cursor

• A cursor is a pointer to the private memory area allocated by
the Oracle server.

• There are two types of cursors:
– Implicit cursors: Created and managed internally by the

Oracle server to process SQL statements
– Explicit cursors: Explicitly declared by the programmer

Cursor
You have already learned that you can include SQL statements that return a single row in a PL/SQL
block. The data retrieved by the SQL statement should be held in variables using the INTO clause.
Where Does Oracle Process SQL Statements?
The Oracle server allocates a private memory area, called the context area, to process SQL
statements. The SQL statement is parsed and processed in this area. The information required for
processing and the information retrieved after processing are stored in this area. Because this area is
internally managed by the Oracle server, you have no control over this area. A cursor is a pointer to
the context area. However, this cursor is an implicit cursor and is automatically managed by the
Oracle server. When the executable block contains a SQL statement, an implicit cursor is created.
There are two types of cursors:

• Implicit cursors: Implicit cursors are created and managed by the Oracle server. You do not
have access to them. The Oracle server creates such a cursor when it executes a SQL statement,
such as SELECT, INSERT, UPDATE, or DELETE.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 2 - 21

Cursor (continued)
• Explicit cursors: As a programmer, you may want to retrieve multiple rows from a database

table, have a pointer to each row that is retrieved, and work on the rows one at a time. In such
cases, you can declare cursors explicitly, depending on your business requirements. Such cursors
that are declared by programmers are called explicit cursors. You declare these cursors in the
declarative section of a PL/SQL block. Remember that you can also declare variables and
exceptions in the declarative section.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 2 - 22

Copyright © 2008, Oracle. All rights reserved.

Processing Explicit Cursors

The following three commands are used to process an explicit
cursor:
• OPEN
• FETCH
• CLOSE

Alternatively, you can also use a cursor FOR loop.

Processing Explicit Cursors
You declare an explicit cursor when you need exact control over query processing. You use three
commands to control a cursor:
• OPEN
• FETCH
• CLOSE

You initialize the cursor with the OPEN command, which recognizes the result set. Then, you execute
the FETCH command repeatedly in a loop until all rows are retrieved. Alternatively, you can use a
BULK COLLECT clause to fetch all rows at once. After the last row is processed, you release the
cursor by using the CLOSE command.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 2 - 23

Copyright © 2008, Oracle. All rights reserved.

Explicit Cursor Attributes

Every explicit cursor has the following attributes:
• cursor_name%FOUND
• cursor_name%ISOPEN
• cursor_name%NOTFOUND
• cursor_name%ROWCOUNT

Cursor Attributes
When cursor attributes are appended to the cursors, they return useful information about the
execution of the data manipulation language (DML) statement. The following are the four cursor
attributes:
• cursor_name%FOUND: Returns TRUE if the last fetch returned a row; returns NULL before

the first fetch from an OPEN cursor; returns FALSE if the last fetch failed to return a row
• cursor_name%ISOPEN: Returns TRUE if the cursor is open, otherwise returns FALSE
• cursor_name%NOTFOUND: Returns FALSE if the last fetch returned a row; returns NULL

before the first fetch from an OPEN cursor; returns TRUE if the last fetch failed to return a row
• cursor_name%ROWCOUNT: Returns zero before the first fetch; after every fetch, returns the

number of rows fetched so far

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 2 - 24

Copyright © 2008, Oracle. All rights reserved.

Cursor FOR Loops

Syntax:

• The cursor FOR loop is a shortcut to process explicit cursors.
• Implicit open, fetch, exit, and close occur.
• The record is implicitly declared.

FOR record_name IN cursor_name LOOP

statement1;

statement2;

. . .

END LOOP;

Cursor FOR Loops
A cursor FOR loop processes rows in an explicit cursor. It is a shortcut, because the cursor is opened,
a row is fetched once for each iteration in the loop, the loop exits when the last row is processed, and
the cursor is closed automatically. The loop itself is terminated automatically at the end of the
iteration where the last row is fetched.
In the syntax:

record_name Is the name of the implicitly declared record
cursor_name Is a PL/SQL identifier for the previously declared cursor

Guidelines
• Do not declare the record in the loop, because it is declared implicitly.
• Test the cursor attributes during the loop, if required.
• Supply the parameters for a cursor, if required, in parentheses following the cursor name in the
FOR statement.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 2 - 25

Copyright © 2008, Oracle. All rights reserved.

Cursor: Example

SET SERVEROUTPUT ON
DECLARE
CURSOR cur_cust IS
SELECT cust_first_name, credit_limit
FROM customers
WHERE credit_limit > 4000;

BEGIN

LOOP
DBMS_OUTPUT.PUT_LINE
(||' '||

);
END LOOP;

END;
/

FOR v_cust_record IN cur_cust

v_cust_record.cust_first_name
v_cust_record.credit_limit

Cursor: Example
The example shows the use of a cursor FOR loop.
cust_record is the record that is implicitly declared. You can access the fetched data with this
implicit record as shown in the slide.
Note: An INTO clause or a FETCH statement is not required because the FETCH INTO is implicit.
The code does not have OPEN and CLOSE statements to open and close the cursor, respectively.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 2 - 26

Copyright © 2008, Oracle. All rights reserved.

Lesson Agenda

• Describing PL/SQL basics
• Listing restrictions on calling functions from SQL expressions
• Reviewing PL/SQL packages
• Identifying how explicit cursors are processed
• Handling exceptions
• Using the raise_application_error procedure
• Managing dependencies
• Using Oracle-supplied packages

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 2 - 27

Copyright © 2008, Oracle. All rights reserved.

Handling Exceptions

• An exception is an error in PL/SQL that is raised during
program execution.

• An exception can be raised:
– Implicitly by the Oracle server
– Explicitly by the program

• An exception can be handled:
– By trapping it with a handler
– By propagating it to the calling environment
– By trapping and propagating it

Handling Exceptions
An exception is an error in PL/SQL that is raised during the execution of a block. A block always
terminates when PL/SQL raises an exception, but you can specify an exception handler to perform
final actions before the block ends.
Methods for Raising an Exception

• An Oracle error occurs and the associated exception is raised automatically. For example, if the
error ORA-01403 occurs when no rows are retrieved from the database in a SELECT
statement, PL/SQL raises the NO_DATA_FOUND exception. These errors are converted into
predefined exceptions.

• Depending on the business functionality that your program is implementing, you may have to
explicitly raise an exception by issuing the RAISE statement within the block. The exception
being raised may be either user-defined or predefined.

• There are some non-predefined Oracle errors. These errors are any standard Oracle errors that
are not predefined. You can explicitly declare exceptions and associate them with the
nonpredefined Oracle errors.

Methods for Handling an Exception
The third method in the slide for handling an exception involves trapping and propagating. It is often
very important to be able to handle an exception after propagating it to the invoking environment, by
issuing a simple RAISE statement.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 2 - 28

Copyright © 2008, Oracle. All rights reserved.

Handling Exceptions

Exception
raised

Is the
exception
trapped?

yes

Execute statements
in the EXCEPTION

section.

Terminate
gracefully.

no
Terminate
abruptly.

Propagate the
exception.

Handling Exceptions (continued)
Trapping an Exception
Include an EXCEPTION section in your PL/SQL program to trap exceptions. If the exception is
raised in the executable section of the block, processing branches to the corresponding exception
handler in the exception section of the block. If PL/SQL successfully handles the exception, the
exception does not propagate to the enclosing block or to the calling environment. The PL/SQL
block terminates successfully.
Propagating an Exception
If the exception is raised in the executable section of the block and there is no corresponding
exception handler, the PL/SQL block terminates with failure and the exception is propagated to an
enclosing block or to the calling environment. The calling environment can be any application, such
as SQL*Plus, that invokes the PL/SQL program.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 2 - 29

Copyright © 2008, Oracle. All rights reserved.

Exceptions: Example

DECLARE

v_lname VARCHAR2(15);

BEGIN

SELECT cust_last_name INTO v_lname FROM customers

WHERE cust_first_name='Ally';

DBMS_OUTPUT.PUT_LINE ('Ally''s last name is : '
||v_lname);

END;

/

EXCEPTION

WHEN TOO_MANY_ROWS THEN

DBMS_OUTPUT.PUT_LINE (' Your select statement
retrieved multiple rows. Consider using a
cursor.');

Exceptions: Example
You have written PL/SQL blocks with a declarative section (beginning with the keyword DECLARE)
and an executable section (beginning and ending with the keywords BEGIN and END, respectively).
For exception handling, include another optional section called the EXCEPTION section. This
section begins with the keyword EXCEPTION. If present, this is the last section in a PL/SQL block.
Examine the code in the slide to see the EXCEPTION section.
The output of this code is shown below:
Your select statement retrieved multiple rows. Consider using a
cursor.

PL/SQL procedure successfully completed.

When the exception is raised, the control shifts to the EXCEPTION section and all statements in the
specified EXCEPTION section are executed. The PL/SQL block terminates with normal, successful
completion. Only one exception handler is executed.
Note the SELECT statement in the executable block. That statement requires that a query must return
only one row. If multiple rows are returned, a “too many rows” exception is raised. If no rows are
returned, a “no data found” exception is raised. The block of code in the slide tests for the “too many
rows” exception.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 2 - 30

Copyright © 2008, Oracle. All rights reserved.

Predefined Oracle Server Errors

• Reference the predefined name in the exception-handling
routine.

• Sample predefined exceptions:
– NO_DATA_FOUND

– TOO_MANY_ROWS

– INVALID_CURSOR

– ZERO_DIVIDE

– DUP_VAL_ON_INDEX

Predefined Oracle Server Errors
You can reference predefined Oracle server errors by using its predefined name within the
corresponding exception-handling routine.
For a complete list of predefined exceptions, see the PL/SQL User’s Guide and Reference.
Note: PL/SQL declares predefined exceptions in the STANDARD package.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 2 - 31

Predefined Oracle Server Errors (continued)

Exception Name Oracle Server
Error
Number

Description

ACCESS_INTO_NULL ORA-06530 Attempted to assign values to the
attributes of an uninitialized object.

CASE_NOT_FOUND ORA-06592 None of the choices in the WHEN
clauses of a CASE statement is
selected, and there is no ELSE clause.

COLLECTION_IS_NULL ORA-06531 Attempted to apply collection methods
other than EXISTS to an uninitialized
nested table or varray.

CURSOR_ALREADY_OPEN ORA-06511 Attempted to open an already open
cursor.

DUP_VAL_ON_INDEX ORA-00001 Attempted to insert a duplicate value.

INVALID_CURSOR ORA-01001 Illegal cursor operation occurred.

INVALID_NUMBER ORA-01722 Conversion of character string to
number failed.

LOGIN_DENIED ORA-01017 Logging on to the Oracle server with
an invalid username or password.

NO_DATA_FOUND ORA-01403 Single-row SELECT returned no data.

NOT_LOGGED_ON ORA-01012 PL/SQL program issued a database
call without being connected to the
Oracle server.

PROGRAM_ERROR ORA-06501 PL/SQL has an internal problem.

ROWTYPE_MISMATCH ORA-06504 Host cursor variable and PL/SQL
cursor variable involved in an
assignment have incompatible return
types.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 2 - 32

Predefined Oracle Server Errors (continued)

Exception Name Oracle
Server
Error
Number

Description

STORAGE_ERROR ORA-06500 PL/SQL ran out of memory or memory is
corrupted.

SUBSCRIPT_BEYOND_COUNT ORA-06533 Referenced a nested table or varray
element by using an index number larger
than the number of elements in the
collection.

SUBSCRIPT_OUTSIDE_LIMIT ORA-06532 Referenced a nested table or varray
element by using an index number that is
outside the legal range (for example –1).

SYS_INVALID_ROWID ORA-01410 The conversion of a character string into
a universal ROWID failed because the
character string did not represent a valid
ROWID.

TIMEOUT_ON_RESOURCE ORA-00051 Time-out occurred while the Oracle
server was waiting for a resource.

TOO_MANY_ROWS ORA-01422 Single-row SELECT returned more than
one row.

VALUE_ERROR ORA-06502 Arithmetic, conversion, truncation, or
size-constraint error occurred.

ZERO_DIVIDE ORA-01476 Attempted to divide by zero.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 2 - 33

Copyright © 2008, Oracle. All rights reserved.

Trapping Non-Predefined Oracle
Server Errors

Declarative section

Declare

Name the
exception

Code PRAGMA
EXCEPTION_INIT

EXCEPTION section

Handle the raised
exception

Associate Reference

Trapping Non-Predefined Oracle Server Errors
Non-predefined exceptions are similar to predefined exceptions; however, they are not defined as
PL/SQL exceptions in the Oracle server. They are standard Oracle errors. You can create exceptions
with standard Oracle errors by using the PRAGMA EXCEPTION_INIT function. Such exceptions are
called nonpredefined exceptions.
You can trap a nonpredefined Oracle server error by declaring it first. The declared exception is
raised implicitly. In PL/SQL, PRAGMA EXCEPTION_INIT instructs the compiler to associate an
exception name with an Oracle error number. This allows you to refer to any internal exception by
name and to write a specific handler for it.
Note: PRAGMA (also called pseudoinstructions) is the keyword that signifies that the statement is a
compiler directive, which is not processed when the PL/SQL block is executed. Rather, it directs the
PL/SQL compiler to interpret all occurrences of the exception name within the block as the
associated Oracle server error number.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 2 - 34

Copyright © 2008, Oracle. All rights reserved.

Trapping User-Defined Exceptions

Declarative
section

Executable
section

Exception-handling
section

Declare Raise Reference

Name the
exception

Explicitly raise
the exception by
using the RAISE

statement

Handle the raised
exception

Trapping User-Defined Exceptions
With PL/SQL, you can define your own exceptions. You define exceptions depending on the
requirements of your application. For example, you may prompt the user to enter a department
number.
Define an exception to deal with error conditions in the input data. Check whether the department
number exists. If it does not, you may have to raise the user-defined exception. PL/SQL exceptions
must be:

• Declared in the declarative section of a PL/SQL block
• Raised explicitly with RAISE statements
• Handled in the EXCEPTION section

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 2 - 35

Copyright © 2008, Oracle. All rights reserved.

Lesson Agenda

• Describing PL/SQL basics
• Listing restrictions on calling functions from SQL expressions
• Reviewing PL/SQL packages
• Identifying how explicit cursors are processed
• Handling exceptions
• Using the raise_application_error procedure
• Managing dependencies
• Using Oracle-supplied packages

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 2 - 36

Copyright © 2008, Oracle. All rights reserved.

The RAISE_APPLICATION_ERROR
Procedure

Syntax:

• You can use this procedure to issue user-defined error
messages from stored subprograms.

• You can report errors to your application and avoid returning
unhandled exceptions.

raise_application_error (error_number,
message[, {TRUE | FALSE}]);

The RAISE_APPLICATION_ERROR Procedure
Use the raise_application_error procedure to communicate a predefined exception
interactively by returning a nonstandard error code and error message. With
raise_application_error, you can report errors to your application and avoid returning
unhandled exceptions.
In the syntax:

error_number

Is a user-specified number for the exception between –20,000
and –20,999 (this is not an Oracle-defined exception number).

message

Is the user-specified message for the exception. It is a character
string up to 2,048 bytes long.

TRUE | FALSE

Is an optional Boolean parameter. (If TRUE, the error is placed
on the stack of previous errors. If FALSE, the default, the error
replaces all previous errors.)

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 2 - 37

Copyright © 2008, Oracle. All rights reserved.

The RAISE_APPLICATION_ERROR
Procedure

• Is used in two places:
– Executable section
– Exception section

• Returns error conditions to the user in a manner consistent
with other Oracle server errors

The RAISE_APPLICATION_ERROR Procedure (continued)
The raise_application_error procedure can be used in either the executable section or the
exception section of a PL/SQL program, or both. The returned error is consistent with how the Oracle
server processes a predefined, nonpredefined, or user-defined error. The error number and message
are displayed to the user.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 2 - 38

Copyright © 2008, Oracle. All rights reserved.

Lesson Agenda

• Describing PL/SQL basics
• Listing restrictions on calling functions from SQL expressions
• Reviewing PL/SQL packages
• Identifying how explicit cursors are processed
• Handling exceptions
• Using the raise_application_error procedure
• Managing dependencies
• Using Oracle-supplied packages

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 2 - 39

Copyright © 2008, Oracle. All rights reserved.

Dependencies

Table

View

Database trigger

Procedure

Function

Package body

Package specification

User-defined object
and collection types

Function

Package specification

Procedure

Sequence

Synonym

Table

View

User-defined object
and collection types

Referenced objectsDependent objects

Dependencies
Some objects reference other objects as part of their definitions. For example, a stored procedure
could contain a SELECT statement that selects columns from a table. For this reason, the stored
procedure is called a dependent object, whereas the table is called a referenced object.
Dependency Issues
If you alter the definition of a referenced object, dependent objects may or may not continue to work
properly. For example, if the table definition is changed, a procedure may or may not continue to
work without an error.
The Oracle server automatically records dependencies among objects. To manage dependencies, all
schema objects have a status (valid or invalid) that is recorded in the data dictionary, and you can
view the status in the USER_OBJECTS data dictionary view.

Status Significance

VALID The schema object was compiled and can be immediately used when referenced.

INVALID The schema object must be compiled before it can be used.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 2 - 40

Copyright © 2008, Oracle. All rights reserved.

Dependencies

View or
procedure

Direct
dependency

Referenced

Indirect
dependency

Direct
dependency

Dependent

Table

Referenced

xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv
xxxxxxxxxxxxxx
vvvvvvvvvvvvvv

Procedure

Dependent

Dependencies (continued)
A procedure or function can directly or indirectly (through an intermediate view, procedure, function,
or packaged procedure or function) reference the following objects:

• Tables
• Views
• Sequences
• Procedures
• Functions
• Packaged procedures or functions

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 2 - 41

Copyright © 2008, Oracle. All rights reserved.

Displaying Direct and Indirect Dependencies

1. Run the utldtree.sql script to create the objects that
enable you to display the direct and indirect dependencies.

2. Execute the DEPTREE_FILL procedure:

EXECUTE deptree_fill('TABLE','OE','CUSTOMERS')

Displaying Direct and Indirect Dependencies
You can display direct and indirect dependencies from additional user views called DEPTREE and
IDEPTREE; these views are provided by the Oracle database.
Example

1. Make sure that the utldtree.sql script was executed. This script is located in the
$ORACLE_HOME/rdbms/admin folder.

2. Populate the DEPTREE_TEMPTAB table with information for a particular referenced object by
invoking the DEPTREE_FILL procedure. There are three parameters for this procedure:

object_type Type of the referenced object

object_owner Schema of the referenced object

object_name Name of the referenced object

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 2 - 42

Copyright © 2008, Oracle. All rights reserved.

Lesson Agenda

• Describing PL/SQL basics
• Listing restrictions on calling functions from SQL expressions
• Reviewing PL/SQL packages
• Identifying how explicit cursors are processed
• Handling exceptions
• Using the raise_application_error procedure
• Managing dependencies
• Using Oracle-supplied packages

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 2 - 43

Copyright © 2008, Oracle. All rights reserved.

Using Oracle-Supplied Packages

Oracle-supplied packages:
• Are provided with the Oracle server
• Extend the functionality of the database
• Enable access to certain SQL features that are normally

restricted for PL/SQL
For example, the DBMS_OUTPUT package was originally
designed to debug PL/SQL programs.

Using Oracle-Supplied Packages
Packages are provided with the Oracle server to allow either of the following:

• PL/SQL access to certain SQL features
• The extension of the functionality of the database

You can use the functionality provided by these packages when creating your application, or you
may simply want to use these packages as ideas when you create your own stored procedures.
Most of the standard packages are created by running catproc.sql.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 2 - 44

Copyright © 2008, Oracle. All rights reserved.

Some of the Oracle-Supplied Packages

Here is an abbreviated list of some Oracle-supplied packages:
• DBMS_ALERT
• DBMS_LOCK
• DBMS_SESSION
• DBMS_OUTPUT
• HTP
• UTL_FILE
• UTL_MAIL
• DBMS_SCHEDULER

Some of the Oracle-Supplied Packages
The list of PL/SQL packages provided with an Oracle database grows with the release of new
versions. It would be impossible to cover the exhaustive set of packages and their functionality in this
course. For more information, refer to the PL/SQL Packages and Types Reference 10g (previously
known as the PL/SQL Supplied Packages Reference).
The following is a brief description of some listed packages:

• The DBMS_ALERT package supports asynchronous notification of database events. Messages or
alerts are sent on a COMMIT command.

• The DBMS_LOCK package is used to request, convert, and release locks through Oracle Lock
Management services.

• The DBMS_SESSION package enables programmatic use of the ALTER SESSION SQL
statement and other session-level commands.

• The DBMS_OUTPUT package provides debugging and buffering of text data.
• The HTP package writes HTML-tagged data into database buffers.
• The UTL_FILE package enables reading and writing of operating system text files.
• The UTL_MAIL package enables composing and sending of email messages.
• The DBMS_SCHEDULER package enables scheduling and automated execution of PL/SQL

blocks, stored procedures, and external procedures or executables.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 2 - 45

Copyright © 2008, Oracle. All rights reserved.

DBMS_OUTPUT Package

The DBMS_OUTPUT package enables you to send messages
from stored subprograms and triggers.
• PUT and PUT_LINE place text in the buffer.
• GET_LINE and GET_LINES read the buffer.
• Use SET SERVEROUTPUT ON to display messages in

SQL*Plus. (The default is OFF.)

PUT_LINE

GET_LINE

PUT
NEW_LINE

GET_LINES

SET SERVEROUT ON [SIZE n]
EXEC proc Buffer

Output

DBMS_OUTPUT Package
The DBMS_OUTPUT package sends textual messages from any PL/SQL block into a buffer in the
database. The procedures provided by the package include:
• PUT to append text from the procedure to the current line of the line output buffer
• NEW_LINE to place an end-of-line marker in the output buffer
• PUT_LINE to combine the action of PUT and NEW_LINE; to trim leading spaces
• GET_LINE to retrieve the current line from the buffer into a procedure variable
• GET_LINES to retrieve an array of lines into a procedure-array variable
• ENABLE/DISABLE to enable or disable calls to the DBMS_OUTPUT procedures

The buffer size can be set by using:
• The SIZE n option appended to the SET SERVEROUTPUT ON command, where n is

between 2,000 (the default) and 1,000,000 (1 million characters)
• An integer parameter between 2,000 and 1,000,000 in the ENABLE procedure

Practical Uses
• You can output results to the window for debugging purposes.
• You can trace the code execution path for a function or procedure.
• You can send messages between subprograms and triggers.

Note: There is no mechanism to flush output during the execution of a procedure.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 2 - 46

Copyright © 2008, Oracle. All rights reserved.

UTL_FILE Package

The UTL_FILE package extends PL/SQL programs to read
and write operating system text files.
• It provides a restricted version of operating system stream

file I/O for text files.
• It can access files in operating system directories defined by

a CREATE DIRECTORY statement.

EXEC proc

O/S fileUTL_FILE

CREATE DIRECTORY
my_dir AS '/dir'

UTL_FILE Package
The Oracle-supplied UTL_FILE package is used to access text files in the operating system of the
database server. The database provides read and write access to specific operating system directories
by using:

• A CREATE DIRECTORY statement that associates an alias with an operating system directory.
The database directory alias can be granted the READ and WRITE privileges to control the type
of access to files in the operating system. For example:

CREATE DIRECTORY my_dir AS '/temp/my_files';
GRANT READ, WRITE ON DIRECTORY my_dir TO public;

This approach of using the directory alias created by the CREATE DIRECTORY statement does not
require the database to be restarted. The operating system directories specified should be accessible
to and on the same machine as the database server processes. The path (directory) names may be
case-sensitive for some operating systems.
Note: The DBMS_LOB package can be used to read binary files on the operating system.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 2 - 47

Copyright © 2008, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Identify a PL/SQL block
• Create subprograms
• List restrictions on calling functions from SQL expressions
• Use cursors
• Handle exceptions
• Use the raise_application_error procedure
• Identify Oracle-supplied packages

Summary
This lesson reviewed some basic PL/SQL concepts, such as:

• PL/SQL block structure
• Subprograms
• Cursors
• Exceptions
• Oracle-supplied packages

The quiz on the following pages is designed to test and review your PL/SQL knowledge. This
knowledge is necessary as a baseline for the subsequent chapters to build upon.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 2 - 48

Copyright © 2008, Oracle. All rights reserved.

Practice 2: Overview

This practice covers the review of the following topics:
• PL/SQL basics
• Cursor basics
• Exceptions
• Dependencies

Practice 2: Overview
In this practice, you test and review your PL/SQL knowledge. This knowledge is necessary as a base
line for the subsequent chapters to build upon.
For answers to the questions in this practice, see Appendix A, “Practice Solutions.”

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 2 - 49

Practice 2: PL/SQL Knowledge Quiz
The questions are designed as a refresher. Use the space provided for your answers. If you do not
know the answer, go on to the next question. For solutions to this quiz, see Appendix A.
PL/SQL Basics

1. Which are the four key areas of the basic PL/SQL block? What happens in each area?

2. What is a variable and where is it declared?

3. What is a constant and where is it declared?

4. What are the different modes for parameters and what does each mode do?

5. How does a function differ from a procedure?

6. Which are the two main components of a PL/SQL package?

a. In what order are they defined?

b. Are both required?

7. How does the syntax of a SELECT statement used within a PL/SQL block differ from a
SELECT statement issued in SQL*Plus?

8. What is a record?

9. What is an index by table?

10. How are loops implemented in PL/SQL?

11. How is branching logic implemented in PL/SQL?

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 2 - 50

Practice 2: PL/SQL Knowledge Quiz (continued)
Cursor Basics

12. What is an explicit cursor?

13. Where do you define an explicit cursor?

14. Name the five steps for using an explicit cursor.

15. What is the syntax used to declare a cursor?

16. What does the FOR UPDATE clause do within a cursor definition?

17. Which command opens an explicit cursor?

18. Which command closes an explicit cursor?

19. Name five implicit actions that a cursor FOR loop provides.

20. Describe what the following cursor attributes do:
- cursor_name%ISOPEN
- cursor_name%FOUND
- cursor_name%NOTFOUND
- cursor_name%ROWCOUNT

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 2 - 51

Practice 2: PL/SQL Knowledge Quiz (continued)
Exceptions

21. An exception occurs in your PL/SQL block, which is enclosed in another PL/SQL block. What
happens to this exception?

22. An exception handler is mandatory within a PL/SQL subprogram. (True/False)

23. What syntax do you use in the exception handler area of a subprogram?

24. How do you code for a NO_DATA_FOUND error?

25. Name three types of exceptions.

26. To associate an exception identifier with an Oracle error code, what pragma would you use and
where?

27. How do you explicitly raise an exception?

28. What types of exceptions are implicitly raised?

29. What does the raise_application_error procedure do?

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 2 - 52

Practice 2: PL/SQL Knowledge Quiz (continued)
Dependencies

30. Which objects can a procedure or function directly reference?

31. Which are the two statuses that a schema object can have and where are they recorded?

32. The Oracle server automatically recompiles invalid procedures when they are called from the
same ______. To avoid compile problems with remote database calls, you can use the
________ model instead of the timestamp model.

33. Which data dictionary contains information on direct dependencies?

34. What script would you run to create the deptree and ideptree views?

35. What does the deptree_fill procedure do and what are the arguments that you need to
provide?

Oracle-Supplied Packages
36. What does the dbms_output package do?

37. How do you write “This procedure works.” from within a PL/SQL program by using
dbms_output?

38. What does dbms_sql do and how does this compare with Native Dynamic SQL?

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Copyright © 2008, Oracle. All rights reserved.

Designing PL/SQL Code

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 3 - 2

Copyright © 2008, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:
• Identify guidelines for cursor design
• Use cursor variables
• Create subtypes based on the existing types for an

application

Objectives
This lesson discusses several concepts that apply to the designing of PL/SQL program units.
This lesson explains how to:

• Design and use cursor variables
• Describe the predefined data types
• Create subtypes based on existing data types for an application

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 3 - 3

Copyright © 2008, Oracle. All rights reserved.

Lesson Agenda

• Identifying guidelines for cursor design
• Using cursor variables
• Creating subtypes based on existing types

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 3 - 4

Copyright © 2008, Oracle. All rights reserved.

Guidelines for Cursor Design

Fetch into a record when fetching from a cursor.

DECLARE

CURSOR cur_cust IS

SELECT customer_id, cust_last_name, cust_email

FROM customers

WHERE credit_limit = 1200;

v_cust_record cur_cust%ROWTYPE;

BEGIN

OPEN cur_cust;

LOOP

FETCH cur_cust INTO v_cust_record;

...

Guidelines for Cursor Design
When fetching from a cursor, fetch into a record. This way you do not need to declare individual
variables, and you reference only the values that you want to use. Additionally, you can
automatically use the structure of the SELECT column list.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 3 - 5

Copyright © 2008, Oracle. All rights reserved.

Guidelines for Cursor Design

Create cursors with parameters.

CREATE OR REPLACE PROCEDURE cust_pack
(p_crd_limit_in NUMBER, p_acct_mgr_in NUMBER)

IS
v_credit_limit NUMBER := 1500;
CURSOR cur_cust

(p_crd_limit NUMBER, p_acct_mgr NUMBER)
IS
SELECT customer_id, cust_last_name, cust_email
FROM customers
WHERE credit_limit = p_crd_limit
AND account_mgr_id = p_acct_mgr;

BEGIN
OPEN cur_cust(p_crd_limit_in, p_acct_mgr_in);

...
CLOSE cur_cust;

...
OPEN cur_cust(v_credit_limit, 145);

...
END;

Guidelines for Cursor Design (continued)
Whenever you need to use a cursor in multiple places with different values for the WHERE
clause, create parameters for your cursor. Parameters increase the flexibility and reusability of
cursors, because you can pass different values to the WHERE clause when you open a cursor,
rather than hard-code a value for the WHERE clause.
Additionally, parameters help avoid scoping problems, because the result set for the cursor is not
tied to a specific variable in a program. You can define a cursor at a higher level and use it in
any subblock with variables defined in the local block.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 3 - 6

Copyright © 2008, Oracle. All rights reserved.

Guidelines for Cursor Design

Reference implicit cursor attributes immediately after
the SQL statement executes.

BEGIN

UPDATE customers

SET credit_limit = p_credit_limit

WHERE customer_id = p_cust_id;

get_avg_order(p_cust_id); -- procedure call

IF SQL%NOTFOUND THEN

...

Guidelines for Cursor Design (continued)
If you are using an implicit cursor and reference a SQL cursor attribute, make sure you reference
it immediately after a SQL statement is executed. This is because SQL cursor attributes are set
on the result of the most recently executed SQL statement. The SQL statement can be executed
in another program. Referencing a SQL cursor attribute immediately after a SQL statement
executes ensures that you are dealing with the result of the correct SQL statement.
In the example in the slide, you cannot rely on the value of SQL%NOTFOUND for the UPDATE
statement, because it is likely to be overwritten by the value of another SQL statement in the
get_avg_order procedure. To ensure accuracy, the cursor attribute function
SQL%NOTFOUND needs to be called immediately after the data manipulation language (DML)
statement:

DECLARE
v_flag BOOLEAN;

BEGIN
UPDATE customers

SET credit_limit = p_credit_limit
WHERE customer_id = p_cust_id;
v_flag := SQL%NOTFOUND

get_avg_order(p_cust_id); -- procedure call
IF v_flag THEN

...

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 3 - 7

Copyright © 2008, Oracle. All rights reserved.

Guidelines for Cursor Design

Simplify coding with cursor FOR loops.

CREATE OR REPLACE PROCEDURE cust_pack
(p_crd_limit_in NUMBER, p_acct_mgr_in NUMBER)

IS
v_credit_limit NUMBER := 1500;
CURSOR cur_cust

(p_crd_limit NUMBER, p_acct_mgr NUMBER)
IS
SELECT customer_id, cust_last_name, cust_email
FROM customers
WHERE credit_limit = p_crd_limit
AND account_mgr_id = p_acct_mgr;

BEGIN
FOR cur_rec IN cur_cust (p_crd_limit_in, p_acct_mgr_in)
LOOP -- implicit open and fetch
...
END LOOP; -- implicit close
...

END;

Guidelines for Cursor Design (continued)
Whenever possible, use cursor FOR loops that simplify coding. Cursor FOR loops reduce the
volume of code that you need to write to fetch data from a cursor and also reduce the chances of
introducing loop errors in your code.
A cursor FOR loop automatically handles the open, fetch, and close operations, and defines a
record type that matches the cursor definition. After it processes the last row, the cursor is closed
automatically. If you do not use a cursor FOR loop, forgetting to close your cursor results in
increased memory usage.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 3 - 8

Copyright © 2008, Oracle. All rights reserved.

CREATE OR REPLACE PROCEDURE cust_list
IS
CURSOR cur_cust IS
SELECT customer_id, cust_last_name, credit_limit*1.1
FROM customers;

cust_record cur_cust%ROWTYPE;
BEGIN

OPEN cur_cust;
LOOP
FETCH cur_cust INTO cust_record;
DBMS_OUTPUT.PUT_LINE('Customer ' ||

cust_record.cust_last_name || ' wants credit '
|| cust_record.(credit_limit * 1.1));

EXIT WHEN cur_cust%NOTFOUND;
END LOOP;

...

Guidelines for Cursor Design

• Close a cursor when it is no longer needed.
• Use column aliases in cursors for calculated columns

fetched into records declared with %ROWTYPE.

Use col. alias

Guidelines for Cursor Design (continued)
• If you no longer need a cursor, close it explicitly. If your cursor is in a package, its scope is

not limited to any particular PL/SQL block. The cursor remains open until you explicitly
close it. An open cursor takes up memory space and continues to maintain row-level locks,
if created with the FOR UPDATE clause, until a commit or rollback. Closing the cursor
releases memory. Ending the transaction by committing or rolling back releases the locks.
Along with a FOR UPDATE clause, you can also use a WHERE CURRENT OF clause with
the DML statements inside the FOR loop. This automatically performs a DML transaction
for the current row in the cursor’s result set, thereby improving performance.
Note: It is a good programming practice to explicitly close your cursors. Leaving cursors
open can generate an exception, because the number of cursors allowed to remain open
within a session is limited.

• Make sure that you use column aliases in your cursor for calculated columns that you fetch
into a record declared with a %ROWTYPE declaration. You would also need column aliases
if you want to reference the calculated column in your program.
The code in the slide does not compile successfully, because it lacks a column alias for the
calculation credit_limit*1.1. After you give it an alias, use the same alias later in the
code to make a reference to the calculation.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 3 - 9

Copyright © 2008, Oracle. All rights reserved.

Lesson Agenda

• Identifying guidelines for cursor design
• Using cursor variables
• Creating subtypes based on existing types

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 3 - 10

Copyright © 2008, Oracle. All rights reserved.

1 Southlake, Texas 1400

2 San Francisco 1500

3 New Jersey 1600

4 Seattle, Washington 1700

5 Toronto 1800

Memory

Cursor Variables: Overview

REF
CURSOR
memory
locator

Cursor Variables: Overview
Like a cursor, a cursor variable points to the current row in the result set of a multiple-row
query. Cursor variables, however, are like C pointers: they hold the memory location of an item
instead of the item itself. Thus, cursor variables differ from cursors the way constants differ from
variables. A cursor is static, a cursor variable is dynamic. In PL/SQL, a cursor variable has a
REF CURSOR data type, where REF stands for reference, and CURSOR stands for the class of
the object.
Using Cursor Variables
To execute a multiple-row query, the Oracle server opens a work area called a “cursor” to store
the processing information. To access the information, you either explicitly name the work area,
or you use a cursor variable that points to the work area. Whereas a cursor always refers to the
same work area, a cursor variable can refer to different work areas. Therefore, cursors and cursor
variables are not interoperable.
An explicit cursor is static and is associated with one SQL statement. A cursor variable can be
associated with different statements at run time.
Primarily, you use a cursor variable to pass a pointer to query result sets between PL/SQL-stored
subprograms and various clients, such as a Developer Forms application. None of them owns the
result set. They simply share a pointer to the query work area that stores the result set.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 3 - 11

Copyright © 2008, Oracle. All rights reserved.

Working with Cursor Variables

Define and
declare the
cursor
variable.

Open the
cursor
variable.

Fetch rows
from the
result set.

Close the
cursor
variable.

1 2 3 4

Working with Cursor Variables
There are four steps for handling a cursor variable. The next few sections contain detailed
information about each step.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 3 - 12

Copyright © 2008, Oracle. All rights reserved.

Strong Versus Weak REF CURSOR Variables

• Strong REF CURSOR:
– Is restrictive
– Specifies a RETURN type
– Associates only with type-compatible queries
– Is less error prone

• Weak REF CURSOR:
– Is nonrestrictive
– Associates with any query
– Is very flexible

Strong Versus Weak REF CURSOR Variables
REF CURSOR types can be strong (restrictive) or weak (nonrestrictive). A strong REF CURSOR
type definition specifies a return type; a weak definition does not. PL/SQL enables you to
associate a strong type only with type-compatible queries, whereas a weak type can be
associated with any query. This makes strong REF CURSOR types less prone to error, but weak
REF CURSOR types more flexible.
In the following example, the first definition is strong, whereas the second is weak:

DECLARE
TYPE rt_cust IS REF CURSOR RETURN customers%ROWTYPE;
TYPE rt_general_purpose IS REF CURSOR;
...

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 3 - 13

Copyright © 2008, Oracle. All rights reserved.

DECLARE
TYPE rt_cust IS REF CURSOR

RETURN customers%ROWTYPE;
...

Step 1: Defining a REF CURSOR Type

Define a REF CURSOR type:

• ref_type_name is a type specified in subsequent
declarations.

• return_type represents a record type.
• RETURN keyword indicates a strong cursor.

TYPE ref_type_name IS REF CURSOR
[RETURN return_type];

Step 1: Defining a Cursor Variable
To create a cursor variable, you first define a REF CURSOR type, and then declare a variable of
that type.
Defining the REF CURSOR type:

TYPE ref_type_name IS REF CURSOR [RETURN return_type];

where: ref_type_name is a type specified in subsequent declarations.
return_type represents a row in a database table.

The REF keyword indicates that the new type is to be a pointer to the defined type. The
return_type is a record type indicating the types of the select list that are eventually
returned by the cursor variable. The return type must be a record type.
Example

DECLARE
TYPE rt_cust IS REF CURSOR RETURN customers%ROWTYPE;
...

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 3 - 14

Copyright © 2008, Oracle. All rights reserved.

Step 1: Declaring a Cursor Variable

Declare a cursor variable of a cursor type:

• cursor_variable_name is the name of the cursor
variable.

• ref_type_name is the name of a REF CURSOR type.

DECLARE

TYPE rt_cust IS REF CURSOR

RETURN customers%ROWTYPE;

cv_cust rt_cust;

cursor_variable_name ref_type_name;

Declaring a Cursor Variable
After the cursor type is defined, declare a cursor variable of that type.

cursor_variable_name ref_type_name;

where: cursor_variable_name is the name of the cursor variable.
ref_type_name is the name of the REF CURSOR type.

Cursor variables follow the same scoping and instantiation rules as all other PL/SQL variables.
In the following example, you declare the cursor variable cv_cust.
Step 1:

DECLARE
TYPE ct_cust IS REF CURSOR RETURN customers%ROWTYPE;
cv_cust rt_cust;

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 3 - 15

Copyright © 2008, Oracle. All rights reserved.

Step 1: Declaring a REF CURSOR
Return Type

Options:
• Use %TYPE and %ROWTYPE.
• Specify a user-defined record in the RETURN clause.
• Declare the cursor variable as the formal parameter of a

stored procedure or function.

Step 1: Declaring a REF CURSOR Return Type
The following are other examples of cursor variable declarations:

• Use %TYPE and %ROWTYPE to provide the data type of a record variable:
DECLARE
cust_rec customers%ROWTYPE; --a recd variable based on a row
TYPE rt_cust IS REF CURSOR RETURN cust_rec%TYPE;
cv_cust rt_cust; --cursor variable

• Specify a user-defined record in the RETURN clause:
DECLARE
TYPE cust_rec_typ IS RECORD
(custno NUMBER(4),
custname VARCHAR2(10),
credit NUMBER(7,2));

TYPE rt_cust IS REF CURSOR RETURN cust_rec_typ;
cv_cust rt_cust;

• Declare a cursor variable as the formal parameter of a stored procedure or function:
DECLARE
TYPE rt_cust IS REF CURSOR RETURN customers%ROWTYPE;
PROCEDURE use_cust_cur_var(cv_cust IN OUT rt_cust)
IS ...

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 3 - 16

Copyright © 2008, Oracle. All rights reserved.

Step 2: Opening a Cursor Variable

• Associate a cursor variable with a multiple-row SELECT
statement.

• Execute the query.
• Identify the result set:

– cursor_variable_name is the name of the
cursor variable.

– select_statement is the SQL SELECT statement.

OPEN cursor_variable_name

FOR select_statement;

Step 2: Opening a Cursor Variable
Other OPEN-FOR statements can open the same cursor variable for different queries. You do
not need to close a cursor variable before reopening it. You must note that when you reopen a
cursor variable for a different query, the previous query is lost.
In the following example, the packaged procedure declares a variable used to select one of
several alternatives in an IF THEN ELSE statement. When called, the procedure opens the
cursor variable for the chosen query.

CREATE OR REPLACE PACKAGE cust_data
IS

TYPE rt_cust IS REF CURSOR RETURN customers%ROWTYPE;
PROCEDURE open_cust_cur_var(cv_cust IN OUT rt_cust,

p_your_choice IN NUMBER);
END cust_data;
/

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 3 - 17

Step 2: Opening a Cursor Variable (continued)
CREATE OR REPLACE PACKAGE BODY cust_data
IS

PROCEDURE open_cust_cur_var(cv_cust IN OUT rt_cust,
p_your_choice IN NUMBER)

IS
BEGIN

IF p_your_choice = 1 THEN
OPEN cv_cust FOR SELECT * FROM customers;

ELSIF p_your_choice = 2 THEN
OPEN cv_cust FOR SELECT * FROM customers

WHERE credit_limit > 3000;
ELSIF p_your_choice = 3 THEN

...
END IF;
END open_cust_cur_var;

END cust_data;
/

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 3 - 18

Copyright © 2008, Oracle. All rights reserved.

Step 3: Fetching from a Cursor Variable

• Retrieve rows from the result set one at a time.

• The return type of the cursor variable must be compatible
with the variables named in the INTO clause of the FETCH
statement.

FETCH cursor_variable_name

INTO variable_name1

[,variable_name2,. . .]

| record_name;

Step 3: Fetching from a Cursor Variable
The FETCH statement retrieves rows from the result set one at a time. PL/SQL verifies that the
return type of the cursor variable is compatible with the INTO clause of the FETCH statement.
For each query column value returned, there must be a type-compatible variable in the INTO
clause. Also, the number of query column values must equal the number of variables. In case of
a mismatch in number or type, the error occurs at compile time for strongly typed cursor
variables and at run time for weakly typed cursor variables.
Note: When you declare a cursor variable as the formal parameter of a subprogram that fetches
from a cursor variable, you must specify the IN (or IN OUT) mode. If the subprogram also
opens the cursor variable, you must specify the IN OUT mode.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 3 - 19

Copyright © 2008, Oracle. All rights reserved.

Step 4: Closing a Cursor Variable

• Disable a cursor variable.
• The result set is undefined.

• Accessing the cursor variable after it is closed raises the
predefined exception INVALID_CURSOR.

CLOSE cursor_variable_name;

Step 4: Closing a Cursor Variable
The CLOSE statement disables a cursor variable, after which the result set is undefined. The
syntax is:

CLOSE cursor_variable_name;

In the following example, the cursor is closed when the last row is processed:
...

LOOP
FETCH cv_cust INTO cust_rec;
EXIT WHEN cv_cust%NOTFOUND;
...

END LOOP;
CLOSE cv_cust;

...

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 3 - 20

Copyright © 2008, Oracle. All rights reserved.

Passing Cursor Variables as Arguments

You can pass query result sets among PL/SQL-stored
subprograms and various clients.

Pointer
to the
result

set

Access by a host variable
on the client side

Passing Cursor Variables as Arguments
Cursor variables are very useful for passing query result sets between PL/SQL-stored
subprograms and various clients. Neither PL/SQL nor any of its clients owns a result set; they
simply share a pointer to the query work area that identifies the result set. For example, an
Oracle Call Interface (OCI) client, or an Oracle Forms application, or the Oracle server can all
refer to the same work area. This might be useful in Oracle Forms, for instance, when you want
to populate a multiple-block form.
Example
Using SQL*Plus, define a host variable with a data type of REFCURSOR to hold the query
results generated from a REF CURSOR in a stored subprogram. Use the SQL*Plus PRINT
command to view the host variable results. Optionally, you can set the SQL*Plus command SET
AUTOPRINT ON to display the query results automatically.

SQL> VARIABLE cv REFCURSOR

Next, create a subprogram that uses a REF CURSOR to pass the cursor variable data back to the
SQL*Plus environment.
Note: You can define a host variable in SQL*Plus or SQL Developer. This slide uses SQL*Plus.
The next slide shows the use of SQL Developer.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 3 - 21

Copyright © 2008, Oracle. All rights reserved.

Passing Cursor Variables as Arguments

Passing Cursor Variables as Arguments (continued)
CREATE OR REPLACE PACKAGE cust_data AS
TYPE typ_cust_rec IS RECORD

(cust_id NUMBER(6), custname VARCHAR2(20),
credit NUMBER(9,2), cust_email VARCHAR2(30));

TYPE rt_cust IS REF CURSOR RETURN typ_cust_rec;
PROCEDURE get_cust
(p_custid IN NUMBER, p_cv_cust IN OUT rt_cust);
END;
/

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 3 - 22

Passing Cursor Variables as Arguments (continued)
CREATE OR REPLACE PACKAGE BODY cust_data AS
PROCEDURE get_cust

(p_custid IN NUMBER, p_cv_cust IN OUT rt_cust)
IS
BEGIN

OPEN p_cv_cust FOR
SELECT customer_id, cust_first_name, credit_limit, cust_email

FROM customers
WHERE customer_id = p_custid;

-- CLOSE p_cv_cust
END;
END;
/

Note that the CLOSE p_cv_cust statement is commented. This is done because, if you close
the REF cursor, it is not accessible from the host variable.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 3 - 23

Copyright © 2008, Oracle. All rights reserved.

Using the Predefined Type SYS_REFCURSOR

Richard Green:

Add this new content on
SYS_REFCURSOR from

David Jacob-Daub

Richard Green:

Add this new content on
SYS_REFCURSOR from

David Jacob-Daub

CREATE OR REPLACE PROCEDURE REFCUR

(p_num IN NUMBER)

IS

refcur sys_refcursor;

empno emp.empno%TYPE;

ename emp.ename%TYPE;

BEGIN

IF p_num = 1 THEN

OPEN refcur FOR SELECT empno, ename FROM emp;

DBMS_OUTPUT.PUT_LINE('Employee# Name');

DBMS_OUTPUT.PUT_LINE('----- -------');

LOOP

FETCH refcur INTO empno, ename;

EXIT WHEN refcur%NOTFOUND;

DBMS_OUTPUT.PUT_LINE(empno || ' ' || ename);

END LOOP;

ELSE

....

SYS_REFCURSOR is a built-in
REF CURSOR type that allows
any result set to be associated
with it.

Using the Predefined Type SYS_REFCURSOR
You can define a cursor variable by using the built-in SYS_REFCURSOR data type as well as by
creating a REF CURSOR type, and then declaring a variable of that type. SYS_REFCURSOR is a
REF CURSOR type that allows any result set to be associated with it. As mentioned earlier, this
is known as a weak (nonrestrictive) REF CURSOR.
SYS_REFCURSOR can be used to:

• Declare a cursor variable in an Oracle stored procedure or function
• Pass cursors from and to an Oracle stored procedure or function

Note: Strong (restrictive) REF CURSORS require the result set to conform to a declared number
and order of fields with compatible data types, and can also, optionally, return a result set.

CREATE OR REPLACE PROCEDURE REFCUR
(p_num IN NUMBER)
IS
refcur sys_refcursor;
empno emp.empno%TYPE;
ename emp.ename%TYPE;
BEGIN
-- continued on the next page

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 3 - 24

Using the Predefined Type SYS_REFCURSOR (continued)
-- continued from the previous page
IF p_num = 1 THEN

OPEN refcur FOR SELECT empno, ename FROM emp;
DBMS_OUTPUT.PUT_LINE('Employee# Name');
DBMS_OUTPUT.PUT_LINE('----- -------');
LOOP

FETCH refcur INTO empno, ename;
EXIT WHEN refcur%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(empno || ' ' || ename);

END LOOP;
ELSE
OPEN refcur FOR

SELECT empno, ename
FROM emp WHERE deptno = 30;

DBMS_OUTPUT.PUT_LINE('Employee# Name');
DBMS_OUTPUT.PUT_LINE('----- -------');
LOOP

FETCH refcur INTO empno, ename;
EXIT WHEN refcur%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(empno || ' ' || ename);

END LOOP;
END IF;

CLOSE refcur;
END;
/

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 3 - 25

Copyright © 2008, Oracle. All rights reserved.

Rules for Cursor Variables

• You cannot use cursor variables with remote subprograms
on another server.

• You cannot use comparison operators to test cursor
variables.

• You cannot assign a null value to cursor variables.
• You cannot use REF CURSOR types in CREATE TABLE or
VIEW statements.

• Cursors and cursor variables are not interoperable.

Restrictions
• Remote subprograms on another server cannot accept the values of cursor variables.

Therefore, you cannot use remote procedure calls (RPCs) to pass cursor variables from one
server to another.

• If you pass a host cursor variable to PL/SQL, you cannot fetch from it on the server side
unless you open it in the server on the same server call.

• You cannot use comparison operators to test cursor variables for equality, inequality, or
nullity.

• You cannot assign NULLs to a cursor variable.
• You cannot use the REF CURSOR types to specify column types in a CREATE TABLE or
CREATE VIEW statement. So, database columns cannot store the values of cursor
variables.

• You cannot use a REF CURSOR type to specify the element type of a collection, which
means that the elements in an index by table, nested table, or VARRAY cannot store the
values of cursor variables.

• Cursors and cursor variables are not interoperable, that is, you cannot use one where the
other is expected.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 3 - 26

Copyright © 2008, Oracle. All rights reserved.

Comparing Cursor Variables
with Static Cursors

Cursor variables have the following benefits:
• Are dynamic and ensure more flexibility
• Are not tied to a single SELECT statement
• Hold the value of a pointer
• Can reduce network traffic
• Give access to query work areas after a

block completes

Comparing Cursor Variables with Static Cursors
Cursor variables are dynamic and provide wider flexibility. Unlike static cursors, cursor
variables are not tied to a single SELECT statement. In applications where SELECT statements
may differ depending on various situations, the cursor variables can be opened for each of the
SELECT statements. Because cursor variables hold the value of a pointer, they can be easily
passed between programs, no matter where the programs exist.
Cursor variables can reduce network traffic by grouping OPEN FOR statements and sending
them across the network only once. For example, the following PL/SQL block opens two cursor
variables in a single round trip:

/* anonymous PL/SQL block in host environment */
BEGIN

OPEN :cv_cust FOR SELECT * FROM customers;
OPEN :cv_orders FOR SELECT * FROM orders;

END;

This may be useful in Oracle Forms, for instance, when you want to populate a multiple-block
form. When you pass host cursor variables to a PL/SQL block for opening, the query work areas
to which they point remain accessible after the block completes. This enables your OCI or
Pro*C program to use these work areas for ordinary cursor operations.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 3 - 27

Copyright © 2008, Oracle. All rights reserved.

Lesson Agenda

• Identifying guidelines for cursor design
• Using Cursor Variables
• Creating subtypes based on existing types

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 3 - 28

Copyright © 2008, Oracle. All rights reserved.

Predefined PL/SQL Data Types

Scalar Types
BINARY_DOUBLE
BINARY_FLOAT
BINARY_INTEGER
DEC
DECIMAL
DOUBLE PRECISION
FLOAT
INT
INTEGER
NATURAL
NATURALN
NUMBER
NUMERIC
PLS_INTEGER
POSITIVE
POSITIVEN
REAL
SIGNTYPE
SMALLINT

CHAR
CHARACTER
LONG
LONG RAW
NCHAR
NVARCHAR2
RAW
ROWID
STRING
UROWID
VARCHAR
VARCHAR2

Composite Types
RECORD
TABLE
VARRAY

Reference Types
REF CURSOR
REF object_type

LOB Types
BFILE
BLOB
CLOB
NCLOB

BOOLEAN

DATE
INTERVAL
TIMESTAMP

Predefined PL/SQL Data Types
Every constant, variable, and parameter has a data type, which specifies a storage format, a valid
range of values, and constraints. PL/SQL provides a variety of predefined data types. For
instance, you can choose from integer, floating point, character, Boolean, date, collection,
reference, and LOB types. In addition, PL/SQL enables you to define subtypes.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 3 - 29

Copyright © 2008, Oracle. All rights reserved.

Subtypes: Overview

A subtype is a subset of an existing data type that may place a
constraint on its base type.

PL/SQL-predefined

User-defined Scalar
data type

Subtype

Subtypes: Overview
A subtype is a data type based on an existing data type. It does not define a new data type;
instead, it places a constraint on an existing data type. There are several predefined subsets
specified in the standard package. DECIMAL and INTEGER are subtypes of NUMBER.
CHARACTER is a subtype of CHAR.
Standard Subtypes
BINARY_INTEGER NUMBER VARCHAR2
NATURAL
NATURALN
POSITIVE
POSITIVEN
SIGNTYPE

DEC
DECIMAL
DOUBLE PRECISION
FLOAT
INTEGER
INT
NUMERIC
REAL
SMALLINT

STRING
VARCHAR

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 3 - 30

Subtypes: Overview (continued)
With NATURAL and POSITIVE subtypes, you can restrict an integer variable to nonnegative
and positive values, respectively. NATURALN and POSITIVEN prevent the assigning of nulls to
an integer variable. You can use SIGNTYPE to restrict an integer variable to the values –1, 0,
and 1, which is useful in programming tri-state logic.
A constrained subtype is a subset of the values normally specified by the data type on which the
subtype is based. POSITIVE is a constrained subtype of BINARY_INTEGER.
An unconstrained subtype is not a subset of another data type; it is an alias to another data type.
FLOAT is an unconstrained subtype of NUMBER.
Use the subtypes DEC, DECIMAL, and NUMERIC to declare fixed-point numbers with a
maximum precision of 38 decimal digits.
Use the subtypes DOUBLE PRECISION and FLOAT to declare floating-point numbers with a
maximum precision of 126 binary digits, which is roughly equivalent to 38 decimal digits. Or,
use the subtype REAL to declare floating-point numbers with a maximum precision of 63 binary
digits, which is roughly equivalent to 18 decimal digits.
Use the subtypes INTEGER, INT, and SMALLINT to declare integers with a maximum
precision of 38 decimal digits.
You can even create your own user-defined subtypes.
Note: You can use these subtypes for compatibility with ANSI/ISO and IBM types. Currently,
VARCHAR is synonymous with VARCHAR2. However, in future releases of PL/SQL, to
accommodate emerging SQL standards, VARCHAR may become a separate data type with
different comparison semantics. It is a good idea to use VARCHAR2 rather than VARCHAR.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 3 - 31

Copyright © 2008, Oracle. All rights reserved.

Benefits of Subtypes

Subtypes:
• Increase reliability
• Provide compatibility with ANSI/ISO and IBM types
• Promote reusability
• Improve readability

– Clarity
– Code self-documents

Benefits of Subtypes
If your applications require a subset of an existing data type, you can create subtypes. By using
subtypes, you can increase the reliability and improve the readability by indicating the intended
use of constants and variables. Subtypes can increase reliability by detecting the out-of-range
values.
With predefined subtypes, you have compatibility with other data types from other programming
languages.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 3 - 32

Copyright © 2008, Oracle. All rights reserved.

Declaring Subtypes

• Subtypes are defined in the declarative section of a PL/SQL
block.

• subtype_name is a type specifier used in subsequent
declarations.

• base_type is any scalar or user-defined
PL/SQL type.

SUBTYPE subtype_name IS base_type [(constraint)]
[NOT NULL];

Declaring Subtypes
Subtypes are defined in the declarative section of a PL/SQL block, subprogram, or package.
Using the SUBTYPE keyword, you name the subtype and provide the name of the base type.
You can use the %TYPE attribute on the base type to pick up a data type from a database column
or from an existing variable data type. You can also use the %ROWTYPE attribute.
Examples

CREATE OR REPLACE PACKAGE mytypes
IS

SUBTYPE Counter IS INTEGER; -- based on INTEGER type
TYPE typ_TimeRec IS RECORD (minutes INTEGER, hours
INTEGER);
SUBTYPE Time IS typ_TimeRec; -- based on RECORD type
SUBTYPE ID_Num IS customers.customer_id%TYPE;
CURSOR cur_cust IS SELECT * FROM customers;
SUBTYPE CustFile IS cur_cust%ROWTYPE; -- based on cursor

END mytypes;
/

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 3 - 33

Copyright © 2008, Oracle. All rights reserved.

Using Subtypes

• Define a variable that uses the subtype in the declarative
section.

• You can constrain a user-defined subtype when declaring
variables of that type.

• You can constrain a user-defined subtype when declaring
the subtype.

identifier_name subtype_name;

identifier_name subtype_name(size);

Using Subtypes
After a subtype is declared, you can assign an identifier for that subtype. Subtypes can increase
reliability by detecting out-of-range values.

DECLARE
v_rows mytypes.Counter; --use package subtype dfn
v_customers mytypes.Counter;
v_start_time mytypes.Time;
SUBTYPE Accumulator IS NUMBER;
v_total Accumulator(4,2);

SUBTYPE Scale IS NUMBER(1,0); -- constrained subtype
v_x_axis Scale; -- magnitude range is -9 .. 9

BEGIN
v_rows := 1;
v_start_time.minutes := 15;
v_start_time.hours := 03;

dbms_output.put_line('Start time is: '||
v_start_time.hours|| ':' || v_start_time.minutes);
END;
/

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 3 - 34

Copyright © 2008, Oracle. All rights reserved.

Subtype Compatibility

An unconstrained subtype is interchangeable with its base type.

DECLARE
SUBTYPE Accumulator IS NUMBER (4,2);
v_amount accumulator;
v_total NUMBER;

BEGIN
v_amount := 99.99;
v_total := 100.00;
dbms_output.put_line('Amount is: ' || v_amount);
dbms_output.put_line('Total is: ' || v_total);
v_total := v_amount;
dbms_output.put_line('This works too: ' ||
v_total);
-- v_amount := v_amount + 1; Will show value error

END;
/

Subtype Compatibility
Some applications require constraining subtypes to a size specification for scientific purposes.
The example in the slide shows that if you exceed the size of your subtype, you receive an error.
An unconstrained subtype is interchangeable with its base type. Different subtypes are
interchangeable if they have the same base type. Different subtypes are also interchangeable if
their base types are in the same data type family.

DECLARE
v_rows mytypes.Counter; v_customers mytypes.Counter;
SUBTYPE Accumulator IS NUMBER (6,2);
v_total NUMBER;

BEGIN
SELECT COUNT(*) INTO v_customers FROM customers;
SELECT COUNT(*) INTO v_rows FROM orders;
v_total := v_customers + v_rows;
DBMS_OUTPUT.PUT_LINE('Total rows from 2 tables: '||
v_total);

EXCEPTION
WHEN value_error THEN
DBMS_OUTPUT.PUT_LINE('Error in data type.');

END;

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 3 - 35

Copyright © 2008, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Use guidelines for cursor design
• Declare, define, and use cursor variables
• Use subtypes as data types

Summary
• Use the guidelines for designing the cursors.
• Take advantage of the features of cursor variables and pass pointers to result sets to

different applications.
• You can use subtypes to organize and strongly type data types for an application.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 3 - 36

Copyright © 2008, Oracle. All rights reserved.

Practice 3: Overview

This practice covers the following topics:
• Determining the output of a PL/SQL block
• Improving the performance of a PL/SQL block
• Implementing subtypes
• Using cursor variables

Practice 3: Overview
In this practice, you determine the output of a PL/SQL code snippet and modify the snippet to
improve performance. Next, you implement subtypes and use cursor variables to pass values to
and from a package.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 3 - 37

Practice 3: Designing PL/SQL Code
Note: The files mentioned in the practice exercises are found in the /labs folder. Additionally,
solution scripts are provided for each question and are located in the /soln folder. Your
instructor will provide you with the exact location of these files. Connect as OE to perform the
steps.

1. Determine the output of the following code snippet in the lab_03_01.sql file.
SET SERVEROUTPUT ON
BEGIN
UPDATE orders SET order_status = order_status;
FOR v_rec IN (SELECT order_id FROM orders)
LOOP

IF SQL%ISOPEN THEN
DBMS_OUTPUT.PUT_LINE('TRUE – ' || SQL%ROWCOUNT);

ELSE
DBMS_OUTPUT.PUT_LINE('FALSE – ' || SQL%ROWCOUNT);

END IF;
END LOOP;
END;
/

2. Modify the following code snippet in the lab_03_02.sql file to make better use of the
FOR UPDATE clause and improve the performance of the program.

DECLARE
CURSOR cur_update

IS SELECT * FROM customers
WHERE credit_limit < 5000 FOR UPDATE;

BEGIN
FOR v_rec IN cur_update
LOOP

IF v_rec IS NOT NULL
THEN

UPDATE customers
SET credit_limit = credit_limit + 200
WHERE customer_id = v_rec.customer_id;

END IF;
END LOOP;
END;
/

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 3 - 38

Practice 3 (continued)
3. Create a package specification that defines subtypes, which can be used for the
warranty_period field of the product_information table. Name this package
MY_TYPES. The type needs to hold the month and year for a warranty period.

4. Create a package named SHOW_DETAILS that contains two subroutines. The first
subroutine should show order details for the given order_id. The second subroutine
should show customer details for the given customer_id, including the customer ID, the
first name, phone numbers, credit limit, and email address. Both the subroutines should use
the cursor variable to return the necessary details.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Copyright © 2008, Oracle. All rights reserved.

Working with Collections

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 4 - 2

Copyright © 2008, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:
• Create collections

– Nested table, varray
– Associative arrays/PLSQL tables

— Integer indexed
— String indexed

• Use collections methods
• Manipulate collections
• Distinguish between the different types of collections and

when to use them

Objectives
In this lesson, you are introduced to PL/SQL programming using collections.
A collection is an ordered group of elements, all of the same type (for example, phone
numbers for each customer). Each element has a unique subscript that determines its position
in the collection.
Collections work like the set, queue, stack, and hash table data structures found in most third-
generation programming languages. Collections can store instances of an object type and can
also be attributes of an object type. Collections can be passed as parameters. So, you can use
them to move columns of data into and out of database tables, or between client-side
applications and stored subprograms. You can define collection types in a PL/SQL package,
and then use the same types across many applications.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 4 - 3

Copyright © 2008, Oracle. All rights reserved.

Lesson Agenda

• Understanding collections
• Using associative arrays
• Using nested tables
• Using varrays
• Working with collections
• Programming for collection exceptions
• Summarizing collections

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 4 - 4

Copyright © 2008, Oracle. All rights reserved.

Understanding Collections

• A collection is a group of elements, all of the
same type.

• Collections work like arrays.
• Collections can store instances of an object type and,

conversely, can be attributes of an object type.
• Types of collections in PL/SQL:

– Associative arrays
— String-indexed collections
— INDEX BY pls_integer or BINARY_INTEGER

– Nested tables
– Varrays

Understanding Collections
A collection is a group of elements, all of the same type. Each element has a unique subscript
that determines its position in the collection. Collections work like the arrays found in most
third-generation programming languages. They can store instances of an object type and,
conversely, can be attributes of an object type. Collections can also be passed as parameters.
You can use them to move columns of data into and out of database tables, or between client-
side applications and stored subprograms.
Object types are used not only to create object relational tables, but also to define collections.
You can use any of the three categories of collections:

• Associative arrays (known as “index by tables” in previous Oracle releases) are sets of
key-value pairs, where each key is unique and is used to locate a corresponding value in
the array. The key can be an integer or a string.

• Nested tables can have any number of elements.
• A varray is an ordered collection of elements.

Note: Associative arrays indexed by pls_integer are covered in the prerequisite courses—
Oracle Database 11g: Program with PL/SQL and Oracle Database 11g: Develop PL/SQL
Program Units—and are not emphasized in this course.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 4 - 5

Copyright © 2008, Oracle. All rights reserved.

Collection Types

Nested table Varray

Associative array

1 2 3 4 5 6 a f i o t w

Index by
PLS_INTEGER

Index by
VARCHAR2

Collection Types
PL/SQL offers three collection types:
Associative Arrays
Associative arrays are sets of key-value pairs, where each key is unique and is used to locate a
corresponding value in the array. The key can be either integer (PLS_INTEGER or
BINARY_INTEGER) or character (VARCHAR2) based. Associative arrays may be sparse.
When you assign a value using a key for the first time, it adds that key to the associative array.
Subsequent assignments using the same key update the same entry. However, it is important to
choose a key that is unique. For example, the key values may come from the primary key of a
database table, from a numeric hash function, or from concatenating strings to form a unique
string value.
Because associative arrays are intended for storing temporary data, you cannot use them with
SQL statements, such as INSERT and SELECT INTO. You can make them persistent for the
life of a database session by declaring the type in a package and assigning the values in a
package body. They are typically populated with a SELECT BULK COLLECT statement
unless they are VARCHAR2 indexed. BULK COLLECT prevents context switching between
the SQL and PL/SQL engines, and is much more efficient on large data sets.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 4 - 6

Collection Types (continued)
Nested Tables
A nested table holds a set of values. In other words, it is a table within a table. Nested tables
are unbounded; that is, the size of the table can increase dynamically. Nested tables are
available in both PL/SQL and the database. Within PL/SQL, nested tables are like one-
dimensional arrays whose size can increase dynamically. Within the database, nested tables
are column types that hold sets of values. The Oracle database stores the rows of a nested table
in no particular order. When you retrieve a nested table from the database into a PL/SQL
variable, the rows are given consecutive subscripts starting at 1. This gives you an array-like
access to individual rows. Nested tables are initially dense, but they can become sparse
through deletions and, therefore, have nonconsecutive subscripts.
Varrays
Variable-size arrays, or varrays, are also collections of homogeneous elements that hold a
fixed number of elements (although you can change the number of elements at run time). They
use sequential numbers as subscripts. You can define equivalent SQL types, thereby allowing
varrays to be stored in database tables. They can be stored and retrieved through SQL, but with
less flexibility than nested tables. You can reference the individual elements for array
operations or manipulate the collection as a whole.
Varrays are always bounded and never sparse. You can specify the maximum size of the
varray in its type definition. Its index has a fixed lower bound of 1 and an extensible upper
bound. A varray can contain a varying number of elements, from zero (when empty) to the
maximum specified in its type definition.

Choosing a PL/SQL Collection Type
If you already have code or business logic that uses another language, you can usually translate
that language’s array and set the types directly to the PL/SQL collection types.

• Arrays in other languages become varrays in PL/SQL.
• Sets and bags in other languages become nested tables in PL/SQL.
• Hash tables and other kinds of unordered lookup tables in other languages become

associative arrays in PL/SQL.
If you are writing original code or designing the business logic from the start, consider the
strengths of each collection type and decide which is appropriate.

Why Use Collections?
Collections offer object-oriented features such as variable-length arrays and nested tables that
provide higher-level ways to organize and access data in the database. Below the object layer,
data is still stored in columns and tables, but you are able to work with the data in terms of the
real-world entities, such as customers and purchase orders, that make the data meaningful.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 4 - 7

Copyright © 2008, Oracle. All rights reserved.

Lesson Agenda

• Understanding collections
• Using associative arrays
• Using nested tables
• Using varrays
• Working with collections
• Programming for collection exceptions
• Summarizing collections

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 4 - 8

Copyright © 2008, Oracle. All rights reserved.

Using Associative Arrays

Associative arrays:
• That are indexed by strings can improve performance
• Are pure memory structures that are much faster than

schema-level tables
• Provide significant additional flexibility

Associative arrays

1 2 3 4 5 6 a f i o t w

Index by
PLS_INTEGER

Index by
VARCHAR2

Using Associative Arrays
Associative arrays (known as “index by tables” in previous Oracle releases) are sets of key-
value pairs, where each key is unique and is used to locate a corresponding value in the array.
The key can be an integer or a string.
When to Use String-Indexed Arrays
You can use INDEX BY VARCHAR2 tables (also known as string-indexed arrays). These
tables are optimized for efficiency by implicitly using the B*-tree organization of the values.
The INDEX BY VARCHAR2 table is optimized for efficiency of lookup on a nonnumeric
key, where the notion of sparseness is not applicable. In contrast, the INDEX BY
PLS_INTEGER tables are optimized for compactness of storage on the assumption that the
data is dense.
Note: Associative arrays indexed by PLS INTEGER are covered in the prerequisite courses—
Oracle Database 11g: Program with PL/SQL and Oracle Database 11g: Develop PL/SQL
Program Units—and are not emphasized in this course.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 4 - 9

Copyright © 2008, Oracle. All rights reserved.

Creating the Array

Associative array in PL/SQL (string-indexed):
TYPE type_name IS TABLE OF element_type

INDEX BY VARCHAR2(size)

CREATE OR REPLACE PROCEDURE report_credit
(p_last_name customers.cust_last_name%TYPE,
p_credit_limit customers.credit_limit%TYPE)

IS
TYPE typ_name IS TABLE OF customers%ROWTYPE

INDEX BY customers.cust_email%TYPE;
v_by_cust_email typ_name;
i VARCHAR2(30);

PROCEDURE load_arrays IS
BEGIN

FOR rec IN (SELECT * FROM customers WHERE cust_email IS NOT NULL)
LOOP

-- Load up the array in single pass to database table.
v_by_cust_email (rec.cust_email) := rec;

END LOOP;
END;

...

Using String-Indexed Arrays
If you need to do heavy processing of customer information in your program that requires
going back and forth over the set of selected customers, you can use string-indexed arrays to
store, process, and retrieve the required information.
This can also be done in SQL but probably in a less efficient implementation. If you need to do
multiple passes over a significant set of static data, you can instead move it from the database
to a set of collections. Accessing collection-based data is much faster than going through the
SQL engine.
After transferring the data from the database to the collections, you can use string- and integer-
based indexing on those collections to, in essence, mimic the primary key and unique indexes
on the table.
In the REPORT_CREDIT procedure shown in the slide, you may need to determine whether a
customer has adequate credit. The string-indexed collection is loaded with the customer
information in the LOAD_ARRAYS procedure. In the main body of the program, the collection
is traversed to find the credit information. The email name is reported in case more than one
customer has the same last name.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 4 - 10

Copyright © 2008, Oracle. All rights reserved.

Populating the Array

...
BEGIN

load_arrays;
i:= v_by_cust_email.FIRST;
dbms_output.put_line ('For credit amount of: ' || p_credit_limit);
WHILE i IS NOT NULL LOOP

IF v_by_cust_email(i).cust_last_name = p_last_name
AND v_by_cust_email(i).credit_limit > p_credit_limit

THEN dbms_output.put_line ('Customer '||
v_by_cust_email(i).cust_last_name || ': ' ||
v_by_cust_email(i).cust_email || ' has credit limit of: ' ||
v_by_cust_email(i).credit_limit);

END IF;
i := v_by_cust_email.NEXT(i);

END LOOP;
END report_credit;
/

EXECUTE report_credit('Walken', 1200)

For credit amount of: 1200
Customer Walken: Emmet.Walken@LIMPKIN.COM has credit limit of: 3600
Customer Walken: Prem.Walken@BRANT.COM has credit limit of: 3700

Using String-Indexed Arrays (continued)
In this example, the string-indexed collection is traversed using the NEXT method.
A more efficient use of the string-indexed collection is to index the collection with the
customer email. Then you can immediately access the information based on the customer
email key. You would need to pass the email name instead of the customer last name.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 4 - 11

Using String-Indexed Arrays (continued)
Here is the modified code:

CREATE OR REPLACE PROCEDURE report_credit
(p_email customers.cust_last_name%TYPE,
p_credit_limit customers.credit_limit%TYPE)

IS
TYPE typ_name IS TABLE OF customers%ROWTYPE

INDEX BY customers.cust_email%TYPE;
v_by_cust_email typ_name;
i VARCHAR2(30);

PROCEDURE load_arrays IS
BEGIN

FOR rec IN (SELECT * FROM customers
WHERE cust_email IS NOT NULL) LOOP

v_by_cust_email (rec.cust_email) := rec;
END LOOP;

END;

BEGIN
load_arrays;
dbms_output.put_line

('For credit amount of: ' || p_credit_limit);
IF v_by_cust_email(p_email).credit_limit > p_credit_limit

THEN dbms_output.put_line ('Customer '||
v_by_cust_email(p_email).cust_last_name ||
': ' || v_by_cust_email(p_email).cust_email ||
' has credit limit of: ' ||
v_by_cust_email(p_email).credit_limit);

END IF;
END report_credit;
/

EXECUTE report_credit('Prem.Walken@BRANT.COM', 100)

For credit amount of: 100
Customer Walken: Prem.Walken@BRANT.COM has credit limit of:
3700

PL/SQL procedure successfully completed.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 4 - 12

Copyright © 2008, Oracle. All rights reserved.

Lesson Agenda

• Understanding collections
• Using associative arrays
• Using nested tables
• Using varrays
• Working with collections
• Programming for collection exceptions
• Summarizing collections

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 4 - 13

Copyright © 2008, Oracle. All rights reserved.

Using Nested Tables

Nested table characteristics:
• A table within a table
• Unbounded
• Available in both SQL and PL/SQL as well as the database
• Array-like access to individual rows

Nested table:

Nested Tables
A nested table holds a set of values. In other words, it is a table within a table. Nested tables
are unbounded, meaning that the size of the table can increase dynamically. Nested tables are
available in both PL/SQL as well as the database. Within PL/SQL, nested tables are like one-
dimensional arrays whose size can increase dynamically. Within the database, nested tables
are column types that hold sets of values. The Oracle database stores the rows of a nested table
in no particular order. When you retrieve a nested table from the database into a PL/SQL
variable, the rows are given consecutive subscripts starting at 1. This gives you an array-like
access to individual rows.
Nested tables are initially dense, but they can become sparse through deletions and, therefore,
have nonconsecutive subscripts.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 4 - 14

Copyright © 2008, Oracle. All rights reserved.

pOrder nested table:

Nested Table Storage

Nested tables are stored out-of-line in storage tables.

Storage table:

31-OCT-07

30-OCT-07

ORDERED

800

500

ORDID

500050

8000

REQUESTER

80

ITEMSSUPPLIER

NESTED_TABLE_ID

55555

56656

57

PRODID

577

PRICE

NESTED_TABLE_ID

88

PRODID

888

PRICE

Nested Table Storage
The rows for all nested tables of a particular column are stored within the same segment. This
segment is called the storage table.
A storage table is a system-generated segment in the database that holds instances of nested
tables within a column. You specify a name for the storage table by using the NESTED
TABLE STORE AS clause in the CREATE TABLE statement. The storage table inherits
storage options from the outermost table.
To distinguish between nested table rows belonging to different parent table rows, a system-
generated nested table identifier that is unique for each outer row enclosing a nested table is
created.
Operations on storage tables are performed implicitly by the system. You should not access or
manipulate the storage table, except implicitly through its containing objects.
The column privileges of the parent table are transferred to the nested table.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 4 - 15

Copyright © 2008, Oracle. All rights reserved.

Creating Nested Tables

To create a nested table in the database:

To create a nested table in PL/SQL:

CREATE [OR REPLACE] TYPE type_name AS TABLE OF
Element_datatype [NOT NULL];

TYPE type_name IS TABLE OF element_datatype

[NOT NULL];

Creating Collection Types
To create a collection, you first define a collection type, and then declare collections of that
type. The slide shows the syntax for defining the nested table collection type in both the
database (persistent) and in PL/SQL (transient).
Creating Collections in the Database
You can create a nested table data type in the database, which makes the data type available to
use in places such as columns in database tables, variables in PL/SQL programs, and attributes
of object types.
Before you can define a database table containing a nested table, you must first create the data
type for the collection in the database.
Use the syntax shown in the slide to create collection types in the database.
Creating Collections in PL/SQL
You can also create a nested table in PL/SQL. Use the syntax shown in the slide to create
collection types in PL/SQL.
Note: Collections can be nested. Collections of collections are also possible.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 4 - 16

Copyright © 2008, Oracle. All rights reserved.

Declaring Collections: Nested Table

• First, define an object type:

• Second, declare a column of that collection type:

CREATE TYPE typ_item AS OBJECT --create object
(prodid NUMBER(5),
price NUMBER(7,2))

/
CREATE TYPE typ_item_nst -- define nested table type

AS TABLE OF typ_item
/

CREATE TABLE pOrder (-- create database table
ordid NUMBER(5),
supplier NUMBER(5),
requester NUMBER(4),
ordered DATE,
items typ_item_nst)
NESTED TABLE items STORE AS item_stor_tab

/

1

2

3

Declaring Collections: Nested Table
To create a table based on a nested table, perform the following steps:

1. Create the typ_item type, which holds the information for a single line item.
2. Create the typ_item_nst type, which is created as a table of the typ_item type.

Note: You must create the typ_item_nst nested table type based on the previously
declared type, because it is illegal to declare multiple data types in this nested table
declaration.

3. Create the pOrder table and use the nested table type in a column declaration, which
includes an arbitrary number of items based on the typ_item_nst type. Thus, each
row of pOrder may contain a table of items.
The NESTED TABLE STORE AS clause is required to indicate the name of the storage
table in which the rows of all values of the nested table reside. The storage table is created
in the same schema and the same tablespace as the parent table.
Note: The USER_COLL_TYPES dictionary view holds information about collections.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 4 - 17

Copyright © 2008, Oracle. All rights reserved.

Using Nested Tables

• Add data to the nested table:
INSERT INTO pOrder

VALUES (500, 50, 5000, sysdate, typ_item_nst(
typ_item(55, 555),
typ_item(56, 566),
typ_item(57, 577)));

INSERT INTO pOrder
VALUES (800, 80, 8000, sysdate,
typ_item_nst (typ_item (88, 888)));

31-OCT-07

30-OCT-07

ORDERED

800

500

ORDID

500050

8000

REQUESTER

80

ITEMSSUPPLIER

55555

56656

57

PRODID

577

PRICE

88

PRODID

888

PRICE

1

2

1

2

pOrder nested table

Using Nested Tables
To insert data into the nested table, you use the INSERT statement. A constructor is a system-
defined function that is used to identify where the data should be placed, essentially
“constructing” the collection from the elements passed to it.
In the example in the slide, the constructors are TYP_ITEM_NST() and TYP_ITEM(). You
pass two elements to the TYP_ITEM() constructor, and then pass the results to the
TYP_ITEM_NST() constructor to build the nested table structure.
The first INSERT statement builds the nested table with three subelement rows.
The second INSERT statement builds the nested table with one subelement row.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 4 - 18

Copyright © 2008, Oracle. All rights reserved.

Using Nested Tables

• Querying the results:

• Querying the results with the TABLE function:

SELECT * FROM porder;

ORDID SUPPLIER REQUESTER ORDERED
---------- ---------- ---------- ---------
ITEMS(PRODID, PRICE)

500 50 5000 31-OCT-07
TYP_ITEM_NST(TYP_ITEM(55, 555), TYP_ITEM(56, 566), TYP_ITEM(57, 577))

800 80 8000 31-OCT-07
TYP_ITEM_NST(TYP_ITEM(88, 888))

SELECT p2.ordid, p1.*
FROM porder p2, TABLE(p2.items) p1;

ORDID PRODID PRICE
---------- ---------- ----------

800 88 888
500 57 577
500 55 555
500 56 566

Querying Nested Tables
You can use two general methods to query a table that contains a column or attribute of a
collection type. One method returns the collections nested in the result rows that contain them.
By including the collection column in the SELECT list, the output shows as a row associated
with the other row output in the SELECT list.
Another method to display the output is to unnest the collection such that each collection
element appears on a row by itself. You can use the TABLE expression in the FROM clause to
unnest a collection.
Querying Collections with the TABLE Expression
To view collections in a conventional format, you must unnest, or flatten, the collection
attribute of a row into one or more relational rows. You can do this by using a TABLE
expression with the collection. A TABLE expression enables you to query a collection in the
FROM clause like a table. In effect, you join the nested table with the row that contains the
nested table without writing a JOIN statement.
The collection column in the TABLE expression uses a table alias to identify the containing
table.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 4 - 19

Copyright © 2008, Oracle. All rights reserved.

Referencing Collection Elements

Use the collection name and a subscript to reference a
collection element:
• Syntax:

• Example:

• To reference a field in a collection:

collection_name(subscript)

v_with_discount(i)

p_new_items(i).prodid

Referencing Collection Elements
Every element reference includes a collection name and a subscript enclosed in parentheses.
The subscript determines which element is processed. To reference an element, you can
specify its subscript by using the following syntax:

collection_name(subscript)

In the preceding syntax, subscript is an expression that yields a positive integer. For nested
tables, the integer must lie in the range 1 to 2147483647. For varrays, the integer must lie in
the range 1 to maximum_size.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 4 - 20

Copyright © 2008, Oracle. All rights reserved.

Using Nested Tables in PL/SQL

CREATE OR REPLACE PROCEDURE add_order_items
(p_ordid NUMBER, p_new_items typ_item_nst)
IS

v_num_items NUMBER;
v_with_discount typ_item_nst;

BEGIN
v_num_items := p_new_items.COUNT;
v_with_discount := p_new_items;
IF v_num_items > 2 THEN
--ordering more than 2 items gives a 5% discount
FOR i IN 1..v_num_items LOOP

v_with_discount(i) :=
typ_item(p_new_items(i).prodid,

p_new_items(i).price*.95);
END LOOP;

END IF;
UPDATE pOrder
SET items = v_with_discount
WHERE ordid = p_ordid;

END;

Using Nested Tables in PL/SQL
When you define a variable of a collection type in a PL/SQL block, it is transient and available
only for the scope of the PL/SQL block.
In the example shown in the slide:

• The nested table P_NEW_ITEMS parameter is passed into the block.
• A local variable V_WITH_DISCOUNT is defined with the nested table data type
TYP_ITEM_NST.

• A collection method, called COUNT, is used to determine the number of items in the
nested table.

• If more than two items are counted in the collection, the local nested table variable
V_WITH_DISCOUNT is updated with the product ID and a 5% discount on the price.

• To reference an element in the collection, the subscript i, representing an integer from the
current loop iteration, is used with the constructor method to identify the row of the nested
table.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 4 - 21

Copyright © 2008, Oracle. All rights reserved.

Using Nested Tables in PL/SQL

-- caller pgm:
DECLARE
v_form_items typ_item_nst:= typ_item_nst();

BEGIN
-- let's say the form holds 4 items
v_form_items.EXTEND(4);
v_form_items(1) := typ_item(1804, 65);
v_form_items(2) := typ_item(3172, 42);
v_form_items(3) := typ_item(3337, 800);
v_form_items(4) := typ_item(2144, 14);
add_order_items(800, v_form_items);

END;

8003337

651804

423172

2144

PRODID

14

PRICE

v_form_items variable

31-OCT-07

30-OCT-07

ORDERED

800

500

ORDID

500050

8000

REQUESTER

80

ITEMSSUPPLIER

Resulting data in the pOrder nested table

8003337

651804

423172

2144

PRODID

14

PRICE

Using Nested Tables in PL/SQL (continued)
In the example code shown in the slide:

• A local PL/SQL variable of nested table type is declared and instantiated with the
collection method TYP_ITEM_NST().

• The nested table variable is extended to hold four rows of elements with the EXTEND(4)
method.

• The nested table variable is populated with four rows of elements by constructing a row of
the nested table with the TYP_ITEM constructor.

• The nested table variable is passed as a parameter to the ADD_ORDER_ITEMS procedure
shown on the previous page.

• The ADD_ORDER_ITEMS procedure updates the ITEMS nested table column in the
pOrder table with the contents of the nested table parameter passed into the routine.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 4 - 22

Copyright © 2008, Oracle. All rights reserved.

Lesson Agenda

• Understanding collections
• Using associative arrays
• Using nested tables
• Using varrays
• Working with collections
• Programming for collection exceptions
• Summarizing collections

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 4 - 23

Copyright © 2008, Oracle. All rights reserved.

Understanding Varrays

• To create a varray in the database:

• To create a varray in PL/SQL:

Varray:

CREATE [OR REPLACE] TYPE type_name AS VARRAY
(max_elements) OF element_datatype [NOT NULL];

TYPE type_name IS VARRAY (max_elements) OF

element_datatype [NOT NULL];

Understanding Varrays
Varrays are also collections of homogeneous elements that hold a fixed number of elements
(although you can change the number of elements at run time). They use sequential numbers
as subscripts.
You can define varrays as a SQL type, thereby allowing varrays to be stored in database tables.
They can be stored and retrieved through SQL, but with less flexibility than nested tables. You
can reference individual elements for array operations, or manipulate the collection as a whole.
You can define varrays in PL/SQL to be used during PL/SQL program execution.
Varrays are always bounded and never sparse. You can specify the maximum size of the
varray in its type definition. Its index has a fixed lower bound of 1 and an extensible upper
bound. A varray can contain a varying number of elements, from zero (when empty) to the
maximum specified in its type definition.
To reference an element, you can use the standard subscripting syntax.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 4 - 24

Copyright © 2008, Oracle. All rights reserved.

CREATE TABLE department (-- create database table
dept_id NUMBER(2),
name VARCHAR2(25),
budget NUMBER(12,2),
projects typ_ProjectList) -- declare varray as column

/

Declaring Collections: Varray

• First, define a collection type:

• Second, declare a collection of that type:

CREATE TYPE typ_Project AS OBJECT(--create object
project_no NUMBER(4),
title VARCHAR2(35),
cost NUMBER(12,2))

/
CREATE TYPE typ_ProjectList AS VARRAY (50) OF typ_Project

-- define VARRAY type
/

1

2

3

Example
The example above shows how to create a table based on a varray.

1. Create the TYP_PROJECT type, which holds the information for a project.
2. Create the TYP_ PROJECTLIST type, which is created as a varray of the project type.

The varray contains a maximum of 50 elements.
3. Create the DEPARTMENT table and use the varray type in a column declaration. Each

element of the varray will store a project object.
This example demonstrates how to create a varray of phone numbers, and then use it in a
CUSTOMERS table (The OE sample schema uses this definition.):

CREATE TYPE phone_list_typ
AS VARRAY(5) OF VARCHAR2(25);
/
CREATE TABLE customers
(customer_id NUMBER(6)
,cust_first_name VARCHAR2(50)
,cust_last_name VARCHAR2(50)
,cust_address cust_address_typ(100)
,phone_numbers phone_list_typ
...
);

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 4 - 25

Copyright © 2008, Oracle. All rights reserved.

Using Varrays

Add data to the table containing a varray column:
INSERT INTO department

VALUES (10, 'Executive Administration', 30000000,
typ_ProjectList(
typ_Project(1001, 'Travel Monitor', 400000),
typ_Project(1002, 'Open World', 10000000)));

INSERT INTO department
VALUES (20, 'Information Technology', 5000000,

typ_ProjectList(
typ_Project(2001, 'DB11gR2', 900000)));

1

2

2001 DB11gR2 900000

1001 Travel Monitor 400000

1002 Open World 10000000

PROJECTS

PROJECT_NO TITLE COSTS

20

10

DEPT_ID

30000000Executive
Administration

5000000

BUDGET

Information
Technology

NAME

1

2

DEPARTMENT table

Example (continued)
To add rows to the DEPARTMENT table that contains the PROJECTS varray column, you use
the INSERT statement. The structure of the varray column is identified with the constructor
methods.
• TYP_PROJECTLIST() constructor constructs the varray data type.
• TYP_PROJECT() constructs the elements for the rows of the varray data type.

The first INSERT statement adds three rows to the PROJECTS varray for department 10.
The second INSERT statement adds one row to the PROJECTS varray for department 20.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 4 - 26

Copyright © 2008, Oracle. All rights reserved.

Using Varrays

• Querying the results:

• Querying the results with the TABLE function:

SELECT * FROM department;

DEPT_ID NAME BUDGET
---------- ------------------------- ----------
PROJECTS(PROJECT_NO, TITLE, COST)

10 Executive Administration 30000000
TYP_PROJECTLIST(TYP_PROJECT(1001, 'Travel Monitor', 400000),
TYP_PROJECT(1002, 'Open World', 10000000))

20 Information Technology 5000000
TYP_PROJECTLIST(TYP_PROJECT(2001, 'DB11gR2', 900000))

SELECT d2.dept_id, d2.name, d1.*
FROM department d2, TABLE(d2.projects) d1;

DEPT_ID NAME PROJECT_NO TITLE COST
------- ------------------------ ---------- -------------- --------

10 Executive Administration 1001 Travel Monitor 400000
10 Executive Administration 1002 Open World 10000000
20 Information Technology 2001 DB11gR2 900000

Querying Varray Columns
You query a varray column in the same way that you query a nested table column.
In the first example in the slide, the collections are nested in the result rows that contain them.
By including the collection column in the SELECT list, the output shows as a row associated
with the other row output in the SELECT list.
In the second example, the output is unnested such that each collection element appears on a
row by itself. You can use the TABLE expression in the FROM clause to unnest a collection.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 4 - 27

Copyright © 2008, Oracle. All rights reserved.

Lesson Agenda

• Understanding collections
• Using associative arrays
• Using nested tables
• Using varrays
• Working with collections
• Programming for collection exceptions
• Summarizing collections

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 4 - 28

Copyright © 2008, Oracle. All rights reserved.

Working with Collections in PL/SQL

• You can declare collections as the formal parameters of
procedures and functions.

• You can specify a collection type in the RETURN clause of a
function specification.

• Collections follow the usual scoping and instantiation rules.
CREATE OR REPLACE PACKAGE manage_dept_proj
AS
PROCEDURE allocate_new_proj_list
(p_dept_id NUMBER, p_name VARCHAR2, p_budget NUMBER);

FUNCTION get_dept_project (p_dept_id NUMBER)
RETURN typ_projectlist;

PROCEDURE update_a_project
(p_deptno NUMBER, p_new_project typ_Project,
p_position NUMBER);

FUNCTION manipulate_project (p_dept_id NUMBER)
RETURN typ_projectlist;

FUNCTION check_costs (p_project_list typ_projectlist)
RETURN boolean;

END manage_dept_proj;

Working with Collections in PL/SQL
There are several points about collections that you must know when working with them:

• You can declare collections as the formal parameters of functions and procedures. That
way, you can pass collections to stored subprograms and from one subprogram to another.

• A function’s RETURN clause can be a collection type.
• Collections follow the usual scoping and instantiation rules. In a block or subprogram,

collections are instantiated when you enter the block or subprogram and cease to exist
when you exit. In a package, collections are instantiated when you first reference the
package and cease to exist when you end the database session.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 4 - 29

Working with Collections: Example
This is the package body for the varray examples shown on the subsequent pages.

CREATE OR REPLACE PACKAGE BODY manage_dept_proj
AS

PROCEDURE allocate_new_proj_list
(p_dept_id NUMBER, p_name VARCHAR2, p_budget NUMBER)

IS
v_accounting_project typ_projectlist;

BEGIN -- this example uses a constructor
v_accounting_project :=

typ_ProjectList
(typ_Project (1, 'Dsgn New Expense Rpt', 3250),
typ_Project (2, 'Outsource Payroll', 12350),
typ_Project (3, 'Audit Accounts Payable',1425));

INSERT INTO department VALUES
(p_dept_id, p_name, p_budget, v_accounting_project);

END allocate_new_proj_list;

FUNCTION get_dept_project (p_dept_id NUMBER)
RETURN typ_projectlist

IS
v_accounting_project typ_projectlist;

BEGIN
-- this example uses a fetch from the database

SELECT projects
INTO v_accounting_project
FROM department
WHERE dept_id = p_dept_id;

RETURN v_accounting_project;
END get_dept_project;

PROCEDURE update_a_project
(p_deptno NUMBER, p_new_project typ_Project,
p_position NUMBER)

IS
v_my_projects typ_ProjectList;

BEGIN
v_my_projects := get_dept_project (p_deptno);
v_my_projects.EXTEND; --make room for new project
/* Move varray elements forward */
FOR i IN REVERSE p_position..v_my_projects.LAST - 1 LOOP

v_my_projects(i + 1) := v_my_projects(i);
END LOOP;
v_my_projects(p_position) := p_new_project; -- add new

-- project
UPDATE department SET projects = v_my_projects

WHERE dept_id = p_deptno;
END update_a_project;
-- continued on next page

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 4 - 30

Working with Collections: Example (continued)
-- continued from previous page

FUNCTION manipulate_project (p_dept_id NUMBER)
RETURN typ_projectlist

IS
v_accounting_project typ_projectlist;
v_changed_list typ_projectlist;

BEGIN
SELECT projects

INTO v_accounting_project
FROM department
WHERE dept_id = p_dept_id;

-- this example assigns one collection to another
v_changed_list := v_accounting_project;
RETURN v_changed_list;

END manipulate_project;

FUNCTION check_costs (p_project_list typ_projectlist)
RETURN boolean

IS
c_max_allowed NUMBER := 10000000;
i INTEGER;
v_flag BOOLEAN := FALSE;

BEGIN
i := p_project_list.FIRST ;
WHILE i IS NOT NULL LOOP

IF p_project_list(i).cost > c_max_allowed then
v_flag := TRUE;
dbms_output.put_line (p_project_list(i).title ||

' exceeded allowable budget.');
RETURN TRUE;

END IF;
i := p_project_list.NEXT(i);
END LOOP;
RETURN null;

END check_costs;

END manage_dept_proj;

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 4 - 31

Copyright © 2008, Oracle. All rights reserved.

Initializing Collections

Three ways to initialize:
• Use a constructor.
• Fetch from the database.
• Assign another collection variable directly.
PROCEDURE allocate_new_proj_list

(p_dept_id NUMBER, p_name VARCHAR2, p_budget NUMBER)
IS
v_accounting_project typ_projectlist;

BEGIN
-- this example uses a constructor
v_accounting_project :=
typ_ProjectList
(typ_Project (1, 'Dsgn New Expense Rpt', 3250),
typ_Project (2, 'Outsource Payroll', 12350),
typ_Project (3, 'Audit Accounts Payable',1425));

INSERT INTO department
VALUES(p_dept_id, p_name, p_budget, v_accounting_project);

END allocate_new_proj_list;

Initializing Collections
Until you initialize it, a collection is atomically null (that is, the collection itself is null, not its
elements). To initialize a collection, you can use one of the following methods:

• Use a constructor, which is a system-defined function with the same name as the
collection type. A constructor allows the creation of an object from an object type.
Invoking a constructor is a way to instantiate (create) an object. This function “constructs”
collections from the elements passed to it. In the example shown in the slide, you pass
three elements to the typ_ProjectList() constructor, which returns a varray
containing those elements.

• Read an entire collection from the database using a fetch.
• Assign another collection variable directly. You can copy the entire contents of one

collection to another as long as both are built from the same data type.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 4 - 32

Copyright © 2008, Oracle. All rights reserved.

FUNCTION get_dept_project (p_dept_id NUMBER)
RETURN typ_projectlist

IS
v_accounting_project typ_projectlist;

BEGIN -- this example uses a fetch from the database
SELECT projects INTO v_accounting_project
FROM department WHERE dept_id = p_dept_id;

RETURN v_accounting_project;
END get_dept_project;

Initializing Collections

FUNCTION manipulate_project (p_dept_id NUMBER)
RETURN typ_projectlist

IS
v_accounting_project typ_projectlist;
v_changed_list typ_projectlist;

BEGIN
SELECT projects INTO v_accounting_project

FROM department WHERE dept_id = p_dept_id;
-- this example assigns one collection to another
v_changed_list := v_accounting_project;
RETURN v_changed_list;

END manipulate_project;

1

2

Initializing Collections (continued)
In the first example shown in the slide, an entire collection from the database is fetched into
the local PL/SQL collection variable.
In the second example in the slide, the entire content of one collection variable is assigned to
another collection variable.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 4 - 33

Copyright © 2008, Oracle. All rights reserved.

Referencing Collection Elements

-- sample caller program to the manipulate_project function
DECLARE
v_result_list typ_projectlist;

BEGIN
v_result_list := manage_dept_proj.manipulate_project(10);
FOR i IN 1..v_result_list.COUNT LOOP
dbms_output.put_line('Project #: '

||v_result_list(i).project_no);
dbms_output.put_line('Title: '||v_result_list(i).title);
dbms_output.put_line('Cost: ' ||v_result_list(i).cost);

END LOOP;

END;

Project #: 1001
Title: Travel Monitor
Cost: 400000
Project #: 1002
Title: Open World
Cost: 10000000

Referencing Collection Elements
In the example in the slide, the code calls the MANIPULATE PROJECT function in the
MANAGE_DEPT_PROJ package. Department 10 is passed in as the parameter. The output
shows the varray element values for the PROJECTS column in the DEPARTMENT table for
department 10.
Whereas the value of 10 is hard-coded, you can have a form interface to query the user for a
department value that can then be passed into the routine.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 4 - 34

Copyright © 2008, Oracle. All rights reserved.

Using Collection Methods

• EXISTS
• COUNT
• LIMIT
• FIRST and LAST
• PRIOR and NEXT
• EXTEND
• TRIM
• DELETE

collection_name.method_name [(parameters)]

Using Collection Methods
You can use collection methods from procedural statements but not from SQL statements.
Here is a list of some of the collection methods that you can use. You have already seen a few
in the preceding examples.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 4 - 35

Using Collection Methods (continued)

Function or
Procedure

Description

EXISTS Returns TRUE if the nth element in a collection exists; otherwise,
EXISTS(N) returns FALSE.

COUNT Returns the number of elements that a collection contains.
LIMIT For nested tables that have no maximum size, LIMIT returns NULL;

for varrays, LIMIT returns the maximum number of elements that a
varray can contain.

FIRST and
LAST

Returns the first and last (smallest and largest) index numbers in a
collection, respectively.

PRIOR and
NEXT

PRIOR(n) returns the index number that precedes index n in a
collection; NEXT(n) returns the index number that follows index n.

EXTEND Appends one null element. EXTEND(n) appends n elements;
EXTEND(n, i) appends n copies of the ith element.

TRIM Removes one element from the end; TRIM(n) removes n elements
from the end of a collection

DELETE Removes all elements from a nested or associative array table.
DELETE(n) removes the nth element ; DELETE(m, n) removes a
range. Note: Does not work on varrays.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 4 - 36

Copyright © 2008, Oracle. All rights reserved.

FUNCTION check_costs (p_project_list typ_projectlist)
RETURN boolean

IS
c_max_allowed NUMBER := 10000000;
i INTEGER;
v_flag BOOLEAN := FALSE;

BEGIN
i := p_project_list.FIRST ;
WHILE i IS NOT NULL LOOP
IF p_project_list(i).cost > c_max_allowed then
v_flag := TRUE;
dbms_output.put_line (p_project_list(i).title || '

exceeded allowable budget.');
RETURN TRUE;

END IF;
i := p_project_list.NEXT(i);
END LOOP;
RETURN null;

END check_costs;

Using Collection Methods

Traverse collections with the following methods:

Traversing Collections
In the example in the slide, the FIRST method finds the smallest index number, the NEXT
method traverses the collection starting at the first index.
You can use the PRIOR and NEXT methods to traverse collections indexed by any series of
subscripts. In the example shown, the NEXT method is used to traverse a varray.
PRIOR(n) returns the index number that precedes index n in a collection. NEXT(n) returns
the index number that succeeds index n. If n has no predecessor, PRIOR(n) returns NULL.
Likewise, if n has no successor, NEXT(n) returns NULL. PRIOR is the inverse of NEXT.
PRIOR and NEXT do not wrap from one end of a collection to the other.
When traversing elements, PRIOR and NEXT ignore deleted elements.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 4 - 37

Copyright © 2008, Oracle. All rights reserved.

Using Collection Methods

-- sample caller program to check_costs
set serverout on
DECLARE
v_project_list typ_projectlist;

BEGIN
v_project_list := typ_ProjectList(
typ_Project (1,'Dsgn New Expense Rpt', 3250),
typ_Project (2, 'Outsource Payroll', 120000),
typ_Project (3, 'Audit Accounts Payable',14250000));

IF manage_dept_proj.check_costs(v_project_list) THEN
dbms_output.put_line('Project rejected: overbudget');

ELSE
dbms_output.put_line('Project accepted, fill out forms.');

END IF;
END;

Audit Accounts Payable exceeded allowable budget.
Project rejected: overbudget

1 Dsgn New Expense Rpt 3250
2 Outsource Payroll 120000
3 Audit Accounts Payable 14250000

PROJECT_NO TITLE COSTS
V_PROJECT_LIST variable:

Traversing Collections (continued)
The code shown in the slide calls the CHECK_COSTS function (shown on the previous page).
The CHECK_COSTS function accepts a varray parameter and returns a Boolean value. If it
returns true, the costs for a project element are too high. The maximum budget allowed for a
project element is defined by the C_MAX_ALLOWED constant in the function.
A project with three elements is constructed and passed to the CHECK_COSTS function. The
CHECK_COSTS function returns true, because the third element of the varray exceeds the
value of the maximum allowed costs.
Although the sample caller program has the varray values hard-coded, you could have some
sort of form interface where the user enters the values for projects and the form calls the
CHECK_COSTS function.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 4 - 38

Copyright © 2008, Oracle. All rights reserved.

PROCEDURE update_a_project
(p_deptno NUMBER, p_new_project typ_Project, p_position NUMBER)

IS
v_my_projects typ_ProjectList;

BEGIN
v_my_projects := get_dept_project (p_deptno);
v_my_projects.EXTEND; --make room for new project
/* Move varray elements forward */
FOR i IN REVERSE p_position..v_my_projects.LAST - 1 LOOP
v_my_projects(i + 1) := v_my_projects(i);

END LOOP;
v_my_projects(p_position) := p_new_project; -- insert new one
UPDATE department SET projects = v_my_projects
WHERE dept_id = p_deptno;

END update_a_project;

Manipulating Individual Elements

Manipulating Individual Elements
You must use PL/SQL procedural statements to reference the individual elements of a varray
in an INSERT, UPDATE, or DELETE statement. In the example shown in the slide, the
UPDATE_A_PROJECT procedure inserts a new project into a department’s project list at a
given position, and then updates the PROJECTS column with the newly entered value that is
placed within the old collection values.
This code essentially shuffles the elements of a project so that you can insert a new element in
a particular position.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 4 - 39

Copyright © 2008, Oracle. All rights reserved.

Manipulating Individual Elements
-- check the table prior to the update:
SELECT d2.dept_id, d2.name, d1.*
FROM department d2, TABLE(d2.projects) d1;

DEPT_ID NAME PROJECT_NO TITLE COST
------- ------------------------- ---------- ----------------------------- --

10 Executive Administration 1001 Travel Monitor 400000
10 Executive Administration 1002 Open World 10000000
20 Information Technology 2001 DB11gR2 900000

-- caller program to update_a_project
BEGIN
manage_dept_proj.update_a_project(20,
typ_Project(2002, 'AQM', 80000), 2);

END;

DEPT_ID NAME PROJECT_NO TITLE COST
------- ------------------------- ---------- ----------------------------- --

10 Executive Administration 1001 Travel Monitor 400000
10 Executive Administration 1002 Open World 10000000
20 Information Technology 2001 DB11gR2 900000
20 Information Technology 2002 AQM 80000

-- check the table after the update:
SELECT d2.dept_id, d2.name, d1.*
FROM department d2, TABLE(d2.projects) d1;

Manipulating Individual Elements (continued)
To execute the procedure, pass the department number to which you want to add a project, the
project information, and the position where the project information is to be inserted.
The third code box shown in the slide identifies that a project element should be added to the
second position for project 2002 in department 20.
If you execute the following code, the AQM project element is shuffled to position 3 and the
CQN project element is inserted at position 2. :

BEGIN
manage_dept_proj.update_a_project(20,

typ_Project(2003, 'CQN', 85000), 2);
END;

What happens if you request a project element to be inserted at position 5?

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 4 - 40

Copyright © 2008, Oracle. All rights reserved.

Lesson Agenda

• Understanding collections
• Using associative arrays
• Using nested tables
• Using varrays
• Working with collections
• Programming for collection exceptions
• Summarizing collections

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 4 - 41

Copyright © 2008, Oracle. All rights reserved.

Avoiding Collection Exceptions

Common exceptions with collections:
• COLLECTION_IS_NULL
• NO_DATA_FOUND
• SUBSCRIPT_BEYOND_COUNT
• SUBSCRIPT_OUTSIDE_LIMIT
• VALUE_ERROR

Avoiding Collection Exceptions
In most cases, if you reference a nonexistent collection element, PL/SQL raises a predefined
exception.
Exception Raised when:
COLLECTION_IS_NULL You try to operate on an atomically null collection.
NO_DATA_FOUND A subscript designates an element that was

deleted.
SUBSCRIPT_BEYOND_COUNT A subscript exceeds the number of elements in a

collection.
SUBSCRIPT_OUTSIDE_LIMIT A subscript is outside the legal range.
VALUE_ERROR A subscript is null or not convertible to an integer.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 4 - 42

Copyright © 2008, Oracle. All rights reserved.

Common exceptions with collections:

DECLARE
TYPE NumList IS TABLE OF NUMBER;
nums NumList; -- atomically null

BEGIN
/* Assume execution continues despite the raised exceptions.

*/
nums(1) := 1; -- raises COLLECTION_IS_NULL
nums := NumList(1,2); -- initialize table
nums(NULL) := 3 -- raises VALUE_ERROR
nums(0) := 3; -- raises SUBSCRIPT_OUTSIDE_LIMIT
nums(3) := 3; -- raises SUBSCRIPT_BEYOND_COUNT
nums.DELETE(1); -- delete element 1
IF nums(1) = 1 THEN -- raises NO_DATA_FOUND

...

Avoiding Collection Exceptions: Example

Avoiding Collection Exceptions: Example
In the first case, the nested table is atomically null. In the second case, the subscript is null. In
the third case, the subscript is outside the legal range. In the fourth case, the subscript exceeds
the number of elements in the table. In the fifth case, the subscript designates an element that
was deleted.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 4 - 43

Copyright © 2008, Oracle. All rights reserved.

Lesson Agenda

• Understanding collections
• Using associative arrays
• Using nested tables
• Using varrays
• Working with collections
• Programming for collection exceptions
• Summarizing collections

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 4 - 44

Copyright © 2008, Oracle. All rights reserved.

Listing Characteristics for Collections

Retains
ordering and
subscripts

Retains
ordering and
subscripts

Retains
ordering and
subscripts

Does not
retain ordering
and subscripts

Does not
retain ordering
and subscripts

Ordering

Stored inline
(if < 4,000
bytes)

Dense

Yes

DB
Varrays

N/A

Dense

Yes

PL/SQL
Varrays

Storage

Sparsity

Maximum
size

DynamicNoNo

N/AStored out-of-
line

N/A

No

DB
Nested
Tables

YesCan be

PL/SQL
Associative
Arrays

PL/SQL
Nested
Tables

Choosing Between Nested Tables and Associative Arrays
• Use associative arrays when:

- You need to collect information of unknown volume.
- You need flexible subscripts (negative, nonsequential, or string-based).
- You need to pass the collection to and from the database server (use associative

arrays with the bulk constructs).
• Use nested tables when:

- You need persistence.
- You need to pass the collection as a parameter.

Choosing Between Nested Tables and Varrays
• Use varrays when:

- The number of elements is known in advance.
- The elements are usually all accessed in sequence.

• Use nested tables when:
- The index values are not consecutive.
- There is no predefined upper bound for the index values.
- You need to delete or update some, not all, elements simultaneously.
- You would usually create a separate lookup table with multiple entries for each row

of the main table and access it through join queries.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 4 - 45

Copyright © 2008, Oracle. All rights reserved.

Guidelines for Using Collections Effectively

• Varrays involve fewer disk accesses and are more efficient.
• Use nested tables for storing large amounts of data.
• Use varrays to preserve the order of elements in the

collection column.
• If you do not have a requirement to delete elements in the

middle of a collection, favor varrays.
• Varrays do not allow piecewise updates.
• After deleting the elements, release the unused memory with
DBMS_SESSION.FREE_UNUSED_USER_MEMORY

Guidelines for Using Collections Effectively
• Because varray data is stored inline (in the same tablespace), retrieving and storing

varrays involves fewer disk accesses. Varrays are thus more efficient than nested tables.
• To store large amounts of persistent data in a column collection, use nested tables. Thus,

the Oracle server can use a separate table to hold the collection data, which can grow over
time. For example, when a collection for a particular row could contain 1 to 1,000,000
elements, a nested table is simpler to use.

• If your data set is not very large and it is important to preserve the order of elements in a
collection column, use varrays. For example, if you know that the collection will not
contain more than 10 elements in each row, you can use a varray with a limit of 10.

• If you do not want to deal with deletions in the middle of the data set, use varrays.
• If you expect to retrieve the entire collection simultaneously, use varrays.
• Varrays do not allow piecewise updates.
• After deleting the elements, you can release the unused memory with the
DBMS_SESSION.FREE_UNUSED_USER_MEMORY procedure.

Note: If your application requires negative subscripts, you can use only associative arrays.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 4 - 46

Copyright © 2008, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Identify types of collections

– Nested tables
– Varrays
– Associative arrays

• Define nested tables and varrays in the database
• Define nested tables, varrays, and associative arrays in

PL/SQL
– Access collection elements
– Use collection methods in PL/SQL
– Identify raised exceptions with collections
– Decide which collection type is appropriate for each scenario

Summary
Collections are a grouping of elements, all of the same type. The types of collections are
nested tables, varrays, and associative arrays. You can define nested tables and varrays in the
database. Nested tables, varrays, and associative arrays can be used in a PL/SQL program.
When using collections in PL/SQL programs, you can access the collection elements, use
predefined collection methods, and use the exceptions that are commonly encountered with
collections.
There are guidelines for using collections effectively and for determining which collection
type is appropriate under specific circumstances.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 4 - 47

Copyright © 2008, Oracle. All rights reserved.

Practice 4: Overview

This practice covers the following topics:
• Analyzing collections
• Using collections

Practice 4: Overview
In this practice, you analyze collections for common errors, create a collection, and then write
a PL/SQL package to manipulate the collection.
Use the OE schema for this practice.
For detailed instructions on performing this practice, see Appendix A, “Practice Solutions.”

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 4 - 48

Practice 4
In this practice, you create a nested table collection and use PL/SQL code to manipulate
the collection.
Analyzing Collections

1. Examine the following definitions. Run the lab_04_01.sql script to create these
objects.

CREATE TYPE typ_item AS OBJECT --create object
(prodid NUMBER(5),
price NUMBER(7,2))

/
CREATE TYPE typ_item_nst -- define nested table type

AS TABLE OF typ_item
/
CREATE TABLE pOrder (-- create database table

ordid NUMBER(5),
supplier NUMBER(5),
requester NUMBER(4),
ordered DATE,
items typ_item_nst)
NESTED TABLE items STORE AS item_stor_tab

/

2. The following code generates an error. Run the lab_04_02.sql script to generate
and view the error.

BEGIN
-- Insert an order
INSERT INTO pOrder

(ordid, supplier, requester, ordered, items)
VALUES (1000, 12345, 9876, SYSDATE, NULL);

-- insert the items for the order created
INSERT INTO TABLE (SELECT items

FROM pOrder
WHERE ordid = 1000)

VALUES(typ_item(99, 129.00));
END;
/

a. Why does the error occur?

b. How can you fix the error?

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 4 - 49

Practice 4 (continued)
Collection Analysis (continued)

3. Examine the following code, which produces an error. Which line causes the error,
and how do you fix it?
(Note: You can run the lab_04_03.sql script to view the error output).

DECLARE
TYPE credit_card_typ
IS VARRAY(100) OF VARCHAR2(30);

v_mc credit_card_typ := credit_card_typ();
v_visa credit_card_typ := credit_card_typ();
v_am credit_card_typ;
v_disc credit_card_typ := credit_card_typ();
v_dc credit_card_typ := credit_card_typ();

BEGIN
v_mc.EXTEND;
v_visa.EXTEND;
v_am.EXTEND;
v_disc.EXTEND;
v_dc.EXTEND;

END;
/

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Practice 4 (continued)
Using Collections
In the following practice exercises, you implement a nested table column in the CUSTOMERS
table and write PL/SQL code to manipulate the nested table.

4. Create a nested table to hold credit card information.
a. Create an object type called typ_cr_card. It should have the following

specification:
card_type VARCHAR2(25)
card_num NUMBER

b. Create a nested table type called typ_cr_card_nst that is a table of
typ_cr_card.

c. Add a column to the CUSTOMERS table called credit_cards. Make this column
a nested table of type typ_cr_card_nst. You can use the following syntax:

ALTER TABLE customers ADD
(credit_cards typ_cr_card_nst)

NESTED TABLE credit_cards STORE AD c_c_store_tab;

5. Create a PL/SQL package that manipulates the credit_cards column in the
CUSTOMERS table.

a. Open the lab_04_05.sql file. It contains the package specification and part of
the package body.

b. Complete the code so that the package:
- Inserts credit card information (the credit card name and number for a specific

customer)
- Displays credit card information in an unnested format

CREATE OR REPLACE PACKAGE credit_card_pkg
IS

PROCEDURE update_card_info
(p_cust_id NUMBER, p_card_type VARCHAR2, p_card_no

VARCHAR2);
PROCEDURE display_card_info

(p_cust_id NUMBER);
END credit_card_pkg; -- package spec
/

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 4 - 51

Practice 4 (continued)
Using Collections (continued)

CREATE OR REPLACE PACKAGE BODY credit_card_pkg
IS

PROCEDURE update_card_info
(p_cust_id NUMBER, p_card_type VARCHAR2, p_card_no

VARCHAR2)
IS

v_card_info typ_cr_card_nst;
i INTEGER;

BEGIN
SELECT credit_cards

INTO v_card_info
FROM customers
WHERE customer_id = p_cust_id;

IF v_card_info.EXISTS(1) THEN
-- cards exist, add more

-- fill in code here

ELSE -- no cards for this customer, construct one

-- fill in code here

END IF;
END update_card_info;

PROCEDURE display_card_info
(p_cust_id NUMBER)

IS
v_card_info typ_cr_card_nst;
i INTEGER;

BEGIN
SELECT credit_cards

INTO v_card_info
FROM customers
WHERE customer_id = p_cust_id;

-- fill in code here to display the nested table
-- contents

END display_card_info;
END credit_card_pkg; -- package body
/

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 4 - 52

Practice 4 (continued)
Using Collections (continued)

6. Test your package with the following statements and compare the output:
EXECUTE credit_card_pkg.display_card_info(120)
Customer has no credit cards.
PL/SQL procedure successfully completed.

EXECUTE credit_card_pkg.update_card_info –
(120, 'Visa', 11111111)

PL/SQL procedure successfully completed.

SELECT credit_cards
FROM customers
WHERE customer_id = 120;

CREDIT_CARDS(CARD_TYPE, CARD_NUM)

TYP_CR_CARD_NST(TYP_CR_CARD('Visa', 11111111))

EXECUTE credit_card_pkg.display_card_info(120)
Card Type: Visa / Card No: 11111111
PL/SQL procedure successfully completed.

EXECUTE credit_card_pkg.update_card_info –
(120, 'MC', 2323232323)

PL/SQL procedure successfully completed.

EXECUTE credit_card_pkg.update_card_info –
(120, 'DC', 4444444)

PL/SQL procedure successfully completed.

EXECUTE credit_card_pkg.display_card_info(120)
Card Type: Visa / Card No: 11111111
Card Type: MC / Card No: 2323232323
Card Type: DC / Card No: 4444444
PL/SQL procedure successfully completed.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 4 - 53

Practice 4 (continued)
Using Collections (continued)

7. Write a SELECT statement against the credit_cards column to unnest the data. Use
the TABLE expression. Use SQL*Plus.

For example, if the SELECT statement returns:

SELECT credit_cards
FROM customers
WHERE customer_id = 120;

CREDIT_CARDS(CARD_TYPE, CARD_NUM)
--
TYP_CR_CARD_NST(TYP_CR_CARD('Visa', 11111111),

TYP_CR_CARD('MC', 2323232323), TYP_CR_CARD('DC',
4444444))

rewrite it using the TABLE expression so that the results look like this:

-- Use the table expression so that the result is:
CUSTOMER_ID CUST_LAST_NAME CARD_TYPE CARD_NUM
----------- --------------- ------------- -----------

120 Higgins Visa 11111111
120 Higgins MC 2323232323
120 Higgins DC 4444444

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Copyright © 2008, Oracle. All rights reserved.

Using Advanced Interface Methods

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 5 - 2

Copyright © 2008, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:
• Execute external C programs from PL/SQL
• Execute Java programs from PL/SQL

Objectives
In this lesson, you learn how to implement an external C routine from PL/SQL code and how to
incorporate Java code into your PL/SQL programs.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 5 - 3

Copyright © 2008, Oracle. All rights reserved.

Calling External Procedures from PL/SQL

With external procedures, you can make “callouts”
and, optionally, “callbacks” through PL/SQL.

PL/SQL
subprogram

DECLARE

BEGIN

EXCEPTION

END;

External
procedure

Java class
method

C routine

External Procedures: Overview
An external procedure (also called an external routine) is a routine stored in a dynamic link
library (DLL), shared object (.so file in UNIX), or libunit in the case of a Java class method
that can perform special purpose processing. You publish the routine with the base language,
and then call it to perform special-purpose processing. You call the external routine from within
PL/SQL or SQL. With C, you publish the routine through a library schema object, which is
called from PL/SQL, that contains the compiled library file name that is stored on the operating
system. With Java, publishing the routine is accomplished through creating a class libunit.
A callout is a call to the external procedure from your PL/SQL code.
A callback occurs when the external procedure calls back to the database to perform SQL
operations. If the external procedure is to execute SQL or PL/SQL, it must “call back” to the
database server process to get this work done.
An external procedure enables you to:

• Move computation-bound programs from the client to the server where they execute faster
(because they avoid the round trips entailed in across-network communication)

• Interface the database server with external systems and data sources
• Extend the functionality of the database itself

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 5 - 4

Copyright © 2008, Oracle. All rights reserved.

Benefits of External Procedures

• External procedures integrate the strength and capability of
different languages to give transparent access to these
routines within the database.

• Extensibility: External procedures provide functionality in the
database that is specific to a particular application, company,
or technological area.

• Reusability: External procedures can be shared by all users
on a database, and they can be moved to other databases
or computers, thereby providing standard functionality with
limited cost in development, maintenance, and deployment.

Benefits of External Procedures
If you use the external procedure call, you can invoke an external routine by using a PL/SQL
program unit. Additionally, you can integrate the powerful programming features of 3GLs with
the ease of data access of SQL and PL/SQL commands.
You can extend the database and provide backward compatibility. For example, you can invoke
different index or sorting mechanisms as an external procedure to implement data cartridges.
Example
A company has very complicated statistics programs written in C. The customer wants to access
the data stored in an Oracle database and pass the data into the C programs. After execution of
the C programs, depending on the result of the evaluations, data is inserted into the appropriate
Oracle database tables.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 5 - 5

Copyright © 2008, Oracle. All rights reserved.

DECLARE

BEGIN

EXCEPTION

END;

PL/SQL
subprogram

Alias
library

External C Procedure Components

Shared library
or directory

extproc
process

External
procedure

User
process

Listener
process

External C Procedure Components
• External procedure: A unit of code written in C
• Shared library: An operating system file that stores the external procedure
• Alias library: A schema object that represents the operating system shared library
• PL/SQL subprograms: Packages, procedures, or functions that define the program unit

specification and mapping to the PL/SQL library
• extproc process: A session-specific process that executes external procedures
• Listener process: A process that starts the extproc process and assigns it to the process

executing the PL/SQL subprogram

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 5 - 6

Copyright © 2008, Oracle. All rights reserved.

DECLARE

BEGIN

EXCEPTION

END;

PL/SQL
subprogram

1

BEGIN
myproc

2
3

4

User
process

How PL/SQL Calls a C External Procedure

5

6
7

Listener
process

External
procedure

extproc
process

Shared library

Alias
library

How PL/SQL Calls a C External Procedure
1. The user process invokes a PL/SQL program.
2. The server process executes a PL/SQL subprogram, which looks up the alias library.
3. The PL/SQL subprogram passes the request to the listener.
4. The listener process spawns the extproc process. The extproc process remains active

throughout your Oracle session until you log off.
5. The extproc process loads the shared library.
6. The extproc process links the server to the external file and executes the external

procedure.
7. The data and status are returned to the server.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 5 - 7

Copyright © 2008, Oracle. All rights reserved.

The extproc Process

• The extproc process services the execution of external
procedures for the duration of the session until the user
logs off.

• Each session uses a different extproc process to execute
external procedures.

• The listener must be configured to allow the server to be
associated with the extproc process.

• The listener must be on the same machine as the server.

The extproc Process
The extproc process performs the following actions:

• Converts PL/SQL calls to C calls:
- Loads the dynamic library

• Executes the external procedures:
- Raises exceptions if necessary
- Converts C back to PL/SQL
- Sends arguments or exceptions back to the server process

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 5 - 8

Copyright © 2008, Oracle. All rights reserved.

The Listener Process

listener.ora

tnsnames.ora

PL/SQL
subprogram

Alias
library

Listener
process

External
procedure Shared library

DECLARE

BEGIN

EXCEPTION

END;
extproc
process

The Listener Process
When the Oracle server executes the external procedure, the request is passed to the listener
process, which spawns an extproc process that executes the call to the external procedure.
This listener returns the information to the server process. A single extproc process is created
for each session. The listener process starts the extproc process. The external procedure
resides in a dynamic library. The Oracle Database Server runs the extproc process to load the
dynamic library and to execute the external procedure.
3GL Call Dependencies: Example
Libraries are objects with the following dependencies:
Given library L1 and procedure P1, which depends on L1, when the procedure P1 is executed,
library L1 is loaded, and the corresponding external library is dynamically loaded. P1 can now
use the external library handle and call the appropriate external functions.
If L1 is dropped, P1 is invalidated and needs to be recompiled.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 5 - 9

Copyright © 2008, Oracle. All rights reserved.

Development Steps for
External C Procedures

1. Create and compile the external procedure in 3GL.
2. Link the external procedure with the shared library at the

operating system level.
3. Create an alias library schema object to map to the

operating system’s shared library.
4. Grant execute privileges on the library.
5. Publish the external C procedure by creating the PL/SQL

subprogram unit specification, which references the alias
library.

6. Execute the PL/SQL subprogram that invokes the external
procedure.

Development Steps for External C Procedures
Steps 1 and 2 vary according to the operating system. Consult your operating system or the
compiler documentation. After these steps are completed, you create an alias library schema
object that identifies the operating system’s shared library within the server. Any user who needs
to execute the C procedure requires execute privileges on the library. Within your PL/SQL code,
you map the C arguments to the PL/SQL parameters, and execute the PL/SQL subprogram that
invokes the external routine.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 5 - 10

Copyright © 2008, Oracle. All rights reserved.

Development Steps for
External C Procedures

1. 2. Varies for each operating system; consult documentation.
3. Use the CREATE LIBRARY statement to create an alias

library object.

4. Grant the EXECUTE privilege on the alias library.

CREATE OR REPLACE LIBRARY library_name IS|AS

'file_path';

GRANT EXECUTE ON library_name TO user|ROLE|PUBLIC;

Creating the Alias Library
An alias library is a database object that is used to map to an external shared library. An external
procedure that you want to use needs to be stored in a DLL or a shared object library (SO)
operating system file. The DBA controls access to the DLL or SO files by using the CREATE
LIBRARY statement to create a schema object called an alias library that represents the external
file. The DBA must give you EXECUTE privileges on the library object so that you can publish
the external procedure, and then call it from a PL/SQL program.
Steps

1, 2. Steps 1 and 2 vary for each operating system. Consult your operating system or the
compiler documentation.

3. Create an alias library object by using the CREATE LIBRARY command:
CONNECT /as sysdba

CREATE OR REPLACE LIBRARY c_utility
AS ‘d:\labs\labs\calc_tax.dll';

The example shows the creation of a database object called c_utility, which references the
location of the file and the name of the operating system file, calc_tax.dll.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 5 - 11

Creating the Alias Library (continued)
4. Grant EXECUTE privilege on the library object:

GRANT EXECUTE ON c_utility TO OE;

5. Publish the external C routine.
6. Call the external C routine from PL/SQL.

Dictionary Information
The alias library definitions are stored in the USER_LIBRARIES and ALL_LIBRARIES data
dictionary views.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 5 - 12

Copyright © 2008, Oracle. All rights reserved.

Development Steps for
External C Procedures

Publish the external procedure in PL/SQL through call
specifications:
• The body of the subprogram contains the external routine

registration.
• The external procedure runs on the same machine.
• Access is controlled through the alias library.

Library

External routine
within the
procedure

Method to Access a Shared Library Through PL/SQL
You can access a shared library by specifying the alias library in a PL/SQL subprogram. The
PL/SQL subprogram then calls the alias library.

• The body of the subprogram contains the external procedure registration.
• The external procedure runs on the same machine.
• Access is controlled through the alias library.

You can publish the external procedure in PL/SQL by:
• Identifying the characteristics of the C procedure to the PL/SQL program
• Accessing the library through PL/SQL

The package specification does not require changes. You do not need definitions for the external
procedure.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 5 - 13

Copyright © 2008, Oracle. All rights reserved.

The Call Specification

Call specifications enable:
• Dispatching the appropriate C or Java target procedure
• Data type conversions
• Parameter mode mappings
• Automatic memory allocation and cleanup
• Purity constraints to be specified, where necessary, for

packaged functions that are called from SQL
• Calling Java methods or C procedures from database

triggers
• Location flexibility

The Call Specification
The current way to publish external procedures is through call specifications. Call specifications
enable you to call external routines from other languages. Although the specification is designed
for intercommunication between SQL, PL/SQL, C, and Java, it is accessible from any base
language that can call these languages.
To use an existing program as an external procedure, load, publish, and then call it.
Call specifications can be specified in any of the following locations:

• Stand-alone PL/SQL procedures and functions
• PL/SQL package specifications
• PL/SQL package bodies
• Object type specifications
• Object type bodies

Note: For functions that have the RESTRICT_REFERENCES pragma, use the TRUST option.
The SQL engine cannot analyze those functions to determine whether they are free from side
effects. The TRUST option makes it easier to call the Java and C procedures.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 5 - 14

Copyright © 2008, Oracle. All rights reserved.

The Call Specification

• Identify the external body within a PL/SQL program to
publish the external C procedure.

• The external body contains the external C procedure
information.

CREATE OR REPLACE FUNCTION function_name
(parameter_list)
RETURN datatype
regularbody | externalbody

END;

IS|AS LANGUAGE C
LIBRARY libname
[NAME C_function_name]
[CALLING STANDARD C | PASCAL]
[WITH CONTEXT]
[PARAMETERS (param_1, [param_n]);

Publishing an External C Routine
You create the PL/SQL procedure or function and use the IS|AS LANGUAGE C to publish the
external C procedure. The external body contains the external routine information.
Syntax Definitions

where: LANGUAGE Is the language in which the external
routine was written (defaults to C)

 LIBRARY libname Is the name of the library database object
 NAME

"C_function_name"
Represents the name of the C function; if
omitted, the external procedure name must
match the name of the PL/SQL
subprogram

 CALLING STANDARD Specifies the Windows NT calling
standard (C or Pascal) under which the
external routine was compiled (defaults
to C)

 WITH CONTEXT Specifies that a context pointer is passed
to the external routine for callbacks

 parameters Identifies arguments passed to the external
routine

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 5 - 15

Copyright © 2008, Oracle. All rights reserved.

• The parameter list:

• The parameter list element:

parameter_list_element
[, parameter_list_element]

{ formal_parameter_name [indicator]
| RETURN INDICATOR
| CONTEXT }
[BY REFERENCE]
[external_datatype]

The Call Specification

The PARAMETER Clause
The foreign parameter list can be used to specify the position and the types of arguments, as well
as to indicate whether they should be passed by value or by reference.
Syntax Definitions

Note: The PARAMETER clause is optional if the mapping of the parameters is done on a
positional basis, and indicators, reference, and context are not needed.

where: formal_parameter_
name [INDICATOR]

Is the name of the PL/SQL parameter that
is being passed to the external routine; the
INDICATOR keyword is used to map a C
parameter whose value indicates whether
the PL/SQL parameter is null

 RETURN INDICATOR Corresponds to the C parameter that
returns a null indicator for the function

 CONTEXT Specifies that a context pointer will be
passed to the external routine

 BY REFERENCE In C, you can pass IN scalar parameters
by value (the value is passed) or by
reference (a pointer to the value is
passed). Use BY REFERENCE to pass the
parameter by reference.

 External_datatype Is the external data type that maps to a C
data type

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 5 - 16

Copyright © 2008, Oracle. All rights reserved.

Publishing an External C Routine

Example
• Publish a C function called calc_tax from a PL/SQL function.

• The C prototype:

CREATE FUNCTION tax_amt (
x BINARY_INTEGER)
RETURN BINARY_INTEGER
AS LANGUAGE C
LIBRARY sys.c_utility
NAME "calc_tax";

/

int calc_tax (n);

Example
You have an external C function called calc_tax that takes in one argument, the total sales
amount. The function returns the tax amount calculated at 8%. The prototype for your
calc_tax function is as follows:

int calc_tax (n);

To publish the calc_tax function in a stored PL/SQL function, use the AS LANGUAGE C
clause within the function definition. The NAME identifies the name of the C function. Double
quotation marks are used to preserve the case of the function defined in the C program. The
LIBRARY identifies the library object that locates the C file. The PARAMETERS clause is not
needed in this example, because the mapping of the parameters is done on a positional basis.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 5 - 17

Copyright © 2008, Oracle. All rights reserved.

Executing the External Procedure

1. Create and compile the external procedure in 3GL.
2. Link the external procedure with the shared library at the

operating system level.
3. Create an alias library schema object to map to the

operating system’s shared library.
4. Grant execute privileges on the library.
5. Publish the external C procedure by creating the PL/SQL

subprogram unit specification, which references the alias
library.

6. Execute the PL/SQL subprogram that invokes the external
procedure.

Executing the External Procedure: Example
Here is a simple example of invoking the external routine:

BEGIN
DBMS_OUTPUT.PUT_LINE(tax_amt(100));

END;

You can call the function in a cursor FOR loop or in any location where a PL/SQL function call
is allowed:

DECLARE
CURSOR cur_orders IS

SELECT order_id, order_total
FROM orders;

v_tax NUMBER(8,2);
BEGIN

FOR order_record IN cur_orders
LOOP

v_tax := tax_amt(order_record.order_total);
DBMS_OUTPUT.PUT_LINE('Total tax: ' || v_tax);

END LOOP;
END;

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 5 - 18

Copyright © 2008, Oracle. All rights reserved.

Java: Overview

The Oracle database can store Java classes and Java source,
which:
• Are stored in the database as procedures, functions, or

triggers
• Run inside the database
• Manipulate data

Java: Overview
The Oracle database can store Java classes (.class files) and Java source code (.java files),
which are stored in the database as procedures, functions, or triggers. These classes can
manipulate data but cannot display graphical user interface (GUI) elements such as Abstract
Window Toolkit (AWT) or Swing components. Running Java inside the database helps these
Java classes to be called many times and manipulate large amounts of data without the
processing and network overhead that comes with running on the client machine.
You must write these named blocks, and then define them by using the loadjava command or
the SQL CREATE FUNCTION, CREATE PROCEDURE, CREATE TRIGGER, or CREATE
PACKAGE statements.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 5 - 19

Copyright © 2008, Oracle. All rights reserved.

Calling a Java Class Method by Using PL/SQL

libunits

Java class
/home/java/bin/Agent.class

1

3

Java

Virtual

Machine

2CREATE
JAVA

4

Calling a Java Class Method by Using PL/SQL
The loadjava command-line utility uploads the Java binaries and resources into a system-
generated database table. It then uses the CREATE JAVA statement to load the Java files into
the RDBMS libunits. You can upload the Java files from file systems, Java IDEs, intranets, or
the Internet.
When the CREATE JAVA statement is invoked, the Java Virtual Machine library manager on
the server loads the Java binaries and resources from the local BFILEs or LOB columns into the
RDBMS libunits. Libunits can be considered analogous to the DLLs written in C, although they
map one-to-one with Java classes, whereas DLLs can contain multiple routines.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 5 - 20

Copyright © 2008, Oracle. All rights reserved.

Development Steps for
Java Class Methods

1. Upload the Java file.
2. Publish the Java class method by creating the PL/SQL

subprogram unit specification that references the Java
class methods.

3. Execute the PL/SQL subprogram that invokes the Java
class method.

Publish Execute

Steps for Using Java Class Methods
Similar to using external C routines, the following steps are required to complete the setup
before executing the Java class method from PL/SQL:

1. Upload the Java file. This takes an external Java binary file and stores the Java code in the
database.

2. Publish the Java class method by creating the PL/SQL subprogram unit specification that
references the Java class methods.

3. Execute the PL/SQL subprogram that invokes the Java class method.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 5 - 21

Copyright © 2008, Oracle. All rights reserved.

Loading Java Class Methods

1. Upload the Java file.
– At the operating system, use the loadjava command-line

utility to load either the Java class file or the Java source file.
• To load the Java source file, use:

• To load the Java class file, use:

– If you load the Java source file, you do not need to load the
Java class file.

>loadjava –user oe/oe Factorial.java

>loadjava –user oe/oe Factorial.class

Loading Java Class Methods
Java classes and their methods are stored in RDBMS libunits where the Java sources, binaries,
and resources can be loaded.
Use the loadjava command-line utility to load and resolve the Java classes. Using the
loadjava utility, you can upload the Java source, class, or resource files into an Oracle
database, where they are stored as Java schema objects. You can run loadjava from the
command line or from an application.
After the file is loaded, it is visible in the data dictionary views.

SELECT object_name, object_type FROM user_objects
WHERE object_type like 'J%';
OBJECT_NAME OBJECT_TYPE
------------------------------ ------------------------
Factorial JAVA CLASS
Factorial JAVA SOURCE

SELECT text FROM user_source WHERE name = 'Factorial';
TEXT

public class Factorial {
public static int calcFactorial (int n) {
if (n == 1) return 1;
else return n * calcFactorial (n - 1) ; }}

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 5 - 22

Copyright © 2008, Oracle. All rights reserved.

Publishing a Java Class Method

2. Publish the Java class method by creating the PL/SQL
subprogram unit specification that references the Java
class methods.
– Identify the external body within a PL/SQL program to publish

the Java class method.
– The external body contains the name of the Java class

method.

{IS | AS} LANGUAGE JAVA
NAME 'method_fullname (java_type_fullname

[, java_type_fullname]...)
[return java_type_fullname]';

CREATE OR REPLACE
{ PROCEDURE procedure_name [(parameter_list)]
| FUNCTION function_name [(parameter_list]...)]

RETURN datatype}
regularbody | externalbody

END;

Publishing a Java Class Method
The publishing of Java class methods is specified in the AS LANGUAGE clause. This call
specification identifies the appropriate Java target routine, data type conversions, parameter
mode mappings, and purity constraints. You can publish value-returning Java methods as
functions and void Java methods as procedures.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 5 - 23

Copyright © 2008, Oracle. All rights reserved.

Publishing a Java Class Method

• Example:

• Java method definition:

CREATE OR REPLACE FUNCTION plstojavafac_fun
(N NUMBER)
RETURN NUMBER
AS
LANGUAGE JAVA
NAME 'Factorial.calcFactorial
(int) return int';

public class Factorial {
public static int calcFactorial (int n) {
if (n == 1) return 1;
else return n * calcFactorial (n - 1) ;

}
}

Example
You want to publish a Java method named calcFactorial that returns the factorial of its
argument, as shown above:

• The PL/SQL function plstojavafac_fun is created to identify the parameters and the
Java characteristics.

• The NAME clause string uniquely identifies the Java method
• The parameter named N corresponds to the int argument

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 5 - 24

Copyright © 2008, Oracle. All rights reserved.

Executing the Java Routine

1. Upload the Java file.
2. Publish the Java class method by creating the PL/SQL

subprogram unit specification that references the Java
class methods.

3. Execute the PL/SQL subprogram that invokes the Java
class method.

Example (continued)
You can call the calcFactorial class method by using the following command:

EXECUTE DBMS_OUTPUT.PUT_LINE(plstojavafac_fun (5));

Anonymous block completed
120

Alternatively, to execute a SELECT statement from the DUAL table:

SELECT plstojavafac_fun (5)
FROM dual;

PLSTOJAVAFAC_FUN(5)

120

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 5 - 25

Copyright © 2008, Oracle. All rights reserved.

Creating Packages for Java Class Methods

CREATE OR REPLACE PACKAGE BODY Demo_pack
AS
PROCEDURE plsToJ_InSpec_proc
(x BINARY_INTEGER, y VARCHAR2, z DATE)
IS LANGUAGE JAVA
NAME 'pkg1.class4.J_InSpec_meth

(int, java.lang.String, java.sql.Date)';

CREATE OR REPLACE PACKAGE Demo_pack
AUTHID DEFINER
AS
PROCEDURE plsToJ_InSpec_proc
(x BINARY_INTEGER, y VARCHAR2, z DATE)

END;

Creating Packages for Java Class Methods
The examples in the slide create a package specification and body named Demo_pack.
The package is a container structure. It defines the specification of the PL/SQL procedure named
plsToJ_InSpec_proc.
Note that you cannot tell whether this procedure is implemented by PL/SQL or by way of an
external procedure. The details of the implementation appear only in the package body in the
declaration of the procedure body.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 5 - 26

Copyright © 2008, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Use external C routines and call them from your PL/SQL

programs
• Use Java methods and call them from your PL/SQL

programs

Summary
You can embed calls to external C programs from your PL/SQL programs by publishing the
external routines in a PL/SQL block. You can take external Java programs and store them in the
database to be called from PL/SQL functions, procedures, and triggers.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 5 - 27

Copyright © 2008, Oracle. All rights reserved.

Practice 5: Overview

This practice covers the following topics:
• Writing programs to interact with C routines
• Writing programs to interact with Java code

Practice 5: Overview
In this practice, you write two PL/SQL programs: One program calls an external C routine and
the second program calls a Java routine.
Use the OE schema for this practice.
For detailed instructions about performing this practice, see Appendix A, “Practice Solutions.”

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 5 - 28

Practice 5
Using External C Routines
An external C routine definition is created for you. The .c file is stored in the D:\labs\labs
directory. This function returns the tax amount based on the total sales figure that is passed to
the function as a parameter. The.c file is named calc_tax.c. The function is defined as:

__declspec(dllexport)
int calc_tax(n)
int n;
{
int tax;
tax = (n*8)/100;
return (tax);
}

1. A DLL file called calc_tax.dll was created for you. Copy the file from the
D:\labs\labs directory into your
D:\app\Administrator\product\11.1.0\db_1\BIN directory.

2. As the SYS user, create the alias library object. Name the library object c_code and define
its path as:
connect / as sysdba

CREATE OR REPLACE LIBRARY c_code
AS 'd:\app\Administrator\product\11.1.0\db_1\bin\calc_tax.dll';
/

3. Grant execute privilege on the library to the OE user by executing the following command:
GRANT EXECUTE ON c_code TO OE;

4. Publish the external C routine.
As the OE user, create a function named call_c. This function has one numeric
parameter and it returns a binary integer. Identify the AS LANGUAGE, LIBRARY, and
NAME clauses of the function.

5. Create a procedure to call the call_c function that was created in the previous step.
Name this procedure C_OUTPUT. It has one numeric parameter. Include a
DBMS_OUTPUT.PUT_LINE statement so that you can view the results returned from your
C function.

6. Set SERVEROUTPUT ON and execute the C_OUTPUT procedure.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 5 - 29

Practice 5 (continued)
Calling Java from PL/SQL
A Java method definition is created for you. The method accepts a 16-digit credit card number
as the argument and returns the formatted credit card number (4 digits followed by a space). The
name of the .class file is FormatCreditCardNo.class. The method is defined as:

public class FormatCreditCardNo
{
public static final void formatCard(String[] cardno)
{
int count=0, space=0;
String oldcc=cardno[0];
String[] newcc= {""};
while (count<16)
{
newcc[0]+= oldcc.charAt(count);
space++;
if (space ==4)
{ newcc[0]+=" "; space=0; }
count++;
}
cardno[0]=newcc [0];
}
}

7. Load the .java source file.

8. Publish the Java class method by defining a PL/SQL procedure named CCFORMAT. This
procedure accepts one IN OUT parameter.

Use the following definition for the NAME parameter:
NAME 'FormatCreditCardNo.formatCard(java.lang.String[])';

9. Execute the Java class method. Define one SQL*Plus or SQL Developer variable, initialize
it, and use the EXECUTE command to execute the CCFORMAT procedure.
Your output should match the PRINT output as shown below.

EXECUTE ccformat(:x);

PRINT x
X

1234 5678 1234 5678

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Copyright © 2008, Oracle. All rights reserved.

Implementing Fine-Grained Access Control
for VPD

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 6 - 2

Copyright © 2008, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:
• Describe the process of fine-grained access control
• Implement and test fine-grained access control

Objectives
In this lesson, you learn about the security features in the Oracle Database from an application
developer’s standpoint.
For more information about these features, refer to Oracle Supplied PL/SQL Packages and
Types Reference, Oracle Label Security Administrator’s Guide, Oracle Single Sign-On
Application Developer’s Guide, and Oracle Security Overview.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 6 - 3

Copyright © 2008, Oracle. All rights reserved.

Lesson Agenda

• Describing the process of fine-grained access control
• Implementing and testing fine-grained access control

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 6 - 4

Copyright © 2008, Oracle. All rights reserved.

Fine-Grained Access Control: Overview

Fine-grained access control:
• Enables you to enforce security through a low level of

granularity
• Restricts users to viewing only “their” information
• Is implemented through a security policy attached to tables
• Is implemented by highly privileged system DBAs, perhaps

in coordination with developers
• Dynamically modifies user statements to fit the policy

Fine-Grained Access Control: Overview
Fine-grained access control enables you to build applications that enforce security rules (or
policies) at a low level of granularity. For example, you can use it to restrict customers who
access the Oracle server to see only their own account, physicians to see only the records of their
own patients, or managers to see only the records of employees who work for them.
When you use fine-grained access control, you create security policy functions attached to the
table or view on which you based your application. When a user enters a data manipulation
language (DML) statement on that object, the Oracle server dynamically modifies the user’s
statement—transparently to the user—so that the statement implements the correct access
control.
Fine-grained access is also known as a virtual private database (VPD), because it implements
row-level security, essentially giving users access to their own private database. Fine-grained
means at the individual row level.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 6 - 5

Copyright © 2008, Oracle. All rights reserved.

Identifying Fine-Grained Access Features

Table

Security
policies

SELECT

INSERT

UPDATE

SELECT

DELETE

SELECT

Features
You can use fine-grained access control to implement security rules called policies with
functions, and then associate those security policies with tables or views. The database server
automatically enforces those security policies, no matter how the data is accessed.
A security policy is a collection of rules needed to enforce the appropriate privacy and security
rules in the database itself, making it transparent to users of the data structure.
Attaching security policies to tables or views, rather than to applications, provides greater
security, simplicity, and flexibility.
You can:

• Use different policies for SELECT, INSERT, UPDATE, and DELETE statements
• Use security policies only where you need them
• Use multiple policies for each table, including building on top of base policies in packaged

applications
• Distinguish policies between different applications by using policy groups

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 6 - 6

Copyright © 2008, Oracle. All rights reserved.

How Fine-Grained Access Works

Implement the policy on the CUSTOMERS table:
“Account managers can see only their own
customers.”

Account manager 148

149

147

147

149

145

145

148

149

Id

Function:

Security
policies

1

2 3

5

...
WHERE account_mgr_id = 148
...

4

SELECT

How Fine-Grained Access Works
To implement a virtual private database so that account managers can see only their own
customers, you must do the following:

1. Create a function to add a WHERE clause identifying a selection criterion to a user’s
SQL statement.

2. Have the user (the account manager) enter a SQL statement.
3. Implement the security policy through the function that you created. The Oracle server calls

the function automatically.
4. Dynamically modify the user’s statement through the function.
5. Execute the dynamically modified statement.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 6 - 7

Copyright © 2008, Oracle. All rights reserved.

How Fine-Grained Access Works

• You write a function to return the account manager ID:

• The account manager user enters a query:

• The query is modified with the function results:
SELECT customer_id, cust_last_name, cust_email
FROM orders
WHERE account_mgr_id = (SELECT account_mgr_id

FROM customers
WHERE account_mgr_id =
SYS_CONTEXT ('userenv','session_user'));

SELECT customer_id, cust_last_name, cust_email
FROM customers;

account_mgr_id := (SELECT account_mgr_id
FROM customers
WHERE account_mgr_id =
SYS_CONTEXT ('userenv','session_user'));

How Fine-Grained Access Works (continued)
Fine-grained access control is based on a dynamically modified statement. In the example in the
slide, the user enters a broad query against the CUSTOMERS table that retrieves customer names
and email names for a specific account manager. The Oracle server calls the function to
implement the security policy. This modification is transparent to the user. It results in
successfully restricting access to other customers’ information, displaying only the information
relevant to the account manager.
Note: The SYS_CONTEXT function returns a value for an attribute, in this case, connection
attributes. This is explained in detail in the following pages.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 6 - 8

Copyright © 2008, Oracle. All rights reserved.

Create a VPD for each of the
account managers by creating policy
functions to generate dynamic
predicates. These predicates can
then be applied across all objects.

Why Use Fine-Grained Access?

To implement the business rule “Account managers can see
only their own customers,” you have three options:

This can be difficult to administer,
especially if there are a large number
of views to track and manage.

Create views with the necessary
Predicates, and then create
synonyms with the same name as
the table names for these views.

This option offers the best security
without major administrative overheads
and it also ensures complete
privacy of information.

Does not ensure privacy enforcement
outside the application. Also, all
application code may need to be
modified in the future as business rules
change.

Modify all existing application code
to include a predicate (a WHERE
clause) for all SQL statements.

CommentOption

Why Use Fine-Grained Access?
There are other methods by which you can implement the business rule “Account managers can
see only their own customers.” The options are listed above. However, by using fine-grained
access, you implement security without major overheads.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 6 - 9

Copyright © 2008, Oracle. All rights reserved.

Lesson Agenda

• Describing the process of fine-grained
access control

• Implementing and testing fine-grained access control

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 6 - 10

Copyright © 2008, Oracle. All rights reserved.

Using an Application Context

• An application context is used to facilitate the
implementation of fine-grained access control.

• It is a named set of attribute/value pairs associated with a
PL/SQL package.

• Applications can have their own application-specific
contexts.

• Users cannot change their application’s context.

Security
policies

ValueAttribute

Context

Attached
to a

session

Associated
with a

packageSession

Implements

Using an Application Context
An application context:

• Is a named set of attribute/value pairs associated with a PL/SQL package
• Is attached to a session
• Enables you to implement security policies with functions, and then associate them

with applications
A context is a named set of attribute/value pairs that are global to your session. You can define
an application context, name it, and associate a value with that context with a PL/SQL package.
An application context enables you to write applications that draw upon certain aspects of a
user’s session information. It provides a way to define, set, and access attributes that an
application can use to enforce access control—specifically, fine-grained access control.
Most applications contain information about the basis on which access is to be limited. In an
order entry application, for example, you limit the customers’ access their own orders
(ORDER_ID) and customer number (CUSTOMER_ID). Or, you may limit account managers
(ACCOUNT_MGR_ID) to view only their own customers. These values can be used as security
attributes. Your application can use a context to set values that are accessed within your code
and used to generate WHERE clause predicates for fine-grained access control.
An application context is owned by SYS.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 6 - 11

Copyright © 2008, Oracle. All rights reserved.

YOUR_DEFINED Context

Using an Application Context

USERENV Context

139.185.35.118IP_ADDRESS

oeSESSION_USER

oeCURRENT_SCHEMA

orclDB_NAME

ValueAttribute
System

predefined

The function
SYS_CONTEXT
returns a value
of an attribute
of a context.

SELECT SYS_CONTEXT ('USERENV', 'SESSION_USER')
FROM DUAL;

SYS_CONTEXT ('USERENV', 'SESSION_USER')
--
OE

AM145account_mgr

cus_1000customer_info

ValueAttribute
Application

defined

Using an Application Context (continued)
A predefined application context named USERENV has a predefined list of attributes. Predefined
attributes can be very useful for access control. You find the values of the attributes in a context
by using the SYS_CONTEXT function. Although the predefined attributes in the USERENV
application context are accessed with the SYS_CONTEXT function, you cannot change them.
With the SYS_CONTEXT function, you pass the context name and the attribute name. The
attribute value is returned.
The following statement returns the name of the database that is being accessed:

SELECT SYS_CONTEXT ('USERENV', 'DB_NAME')
FROM DUAL;

SYS_CONTEXT('USERENV','DB_NAME')
--
ORCL

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 6 - 12

Copyright © 2008, Oracle. All rights reserved.

CREATE [OR REPLACE] CONTEXT namespace
USING [schema.]plsql_package

Creating an Application Context

• Requires the CREATE ANY CONTEXT system privilege
• Parameters:

– namespace is the name of the context.
– schema is the name of the schema owning the PL/SQL

package.
– plsql_package is the name of the package used to set or

modify the attributes of the context. (It does not need to exist
at the time of context creation.)

CREATE CONTEXT order_ctx USING oe.orders_app_pkg;

Context created.

Creating an Application Context
For fine-grained access where you want account manager to view only their customers,
customers to view only their information, and sales representatives to view only their orders, you
can create a context called ORDER_CTX and define for it the ACCOUNT_MGR, CUST_ID and
SALE_REP attributes.
Because a context is associated with a PL/SQL package, you need to name the package that you
are associating with the context. This package does not need to exist at the time of context
creation.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 6 - 13

Copyright © 2008, Oracle. All rights reserved.

Setting a Context

• Use the supplied package procedure
DBMS_SESSION.SET_CONTEXT to set a value for an
attribute within a context.

• Set the attribute value in the package that is associated with
the context.

DBMS_SESSION.SET_CONTEXT('context_name',
'attribute_name',
'attribute_value')

CREATE OR REPLACE PACKAGE orders_app_pkg
...
BEGIN

DBMS_SESSION.SET_CONTEXT('ORDER_CTX',
'ACCOUNT_MGR',
v_user)

...

Setting a Context
When a context is defined, you can use the DBMS_SESSION.SET_CONTEXT procedure to set
a value for an attribute within a context. The attribute is set in the package that is associated with
the context.

CREATE OR REPLACE PACKAGE orders_app_pkg
IS
PROCEDURE set_app_context;
END;
/
CREATE OR REPLACE PACKAGE BODY orders_app_pkg
IS
c_context CONSTANT VARCHAR2(30) := 'ORDER_CTX';
PROCEDURE set_app_context
IS

v_user VARCHAR2(30);
BEGIN
SELECT user INTO v_user FROM dual;
DBMS_SESSION.SET_CONTEXT
(c_context, 'ACCOUNT_MGR', v_user);

END;
END;
/

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 6 - 14

Setting a Context (continued)
In the example on the previous page, the ORDER_CTX context has the ACCOUNT_MGR attribute
set to the current user logged (determined by the USER function).
For this example, assume that users AM145, AM147, AM148, and AM149 exist. As each user
logs on and the DBMS_SESSION.SET_CONTEXT is invoked, the attribute value for that
ACCOUNT_MGR is set to the user ID.

GRANT EXECUTE ON oe.orders_app_pkg
TO AM145, AM147, AM148, AM149;

CONNECT AM145/oracle
Connected.

EXECUTE oe.orders_app_pkg.set_app_context

SELECT SYS_CONTEXT('ORDER_CTX', 'ACCOUNT_MGR') FROM dual;

SYS_CONTEXT('ORDER_CTX', 'ACCOUNT_MGR')

AM145

If you switch the user ID, the attribute value is also changed to reflect the current user.

CONNECT AM147/oracle
Connected.

EXECUTE oe.orders_app_pkg.set_app_context

SELECT SYS_CONTEXT('ORDER_CTX', 'ACCOUNT_MGR') FROM dual;

SYS_CONTEXT('ORDER_CTX', 'ACCOUNT_MGR')

AM147

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 6 - 15

Copyright © 2008, Oracle. All rights reserved.

Implementing a Policy

Follow these steps:
1. Set up a driving context.

2. Create the package associated with the context that you
defined in step 1. In the package:
a. Set the context.
b. Define the predicate.

3. Define the policy.
4. Set up a logon trigger to call the package at logon time and

set the context.
5. Test the policy.

CREATE OR REPLACE CONTEXT order_ctx
USING orders_app_pkg;

Implementing a Policy
In this example, assume that the users AM145, AM147, AM148, and AM149 exist. Next, create a
context and a package associated with the context. The package will be owned by OE.
Step 1: Set Up a Driving Context
Use the CREATE CONTEXT syntax to create a context.

CONNECT /AS sysdba

CREATE CONTEXT order_ctx USING oe.orders_app_pkg;

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 6 - 16

Copyright © 2008, Oracle. All rights reserved.

CREATE OR REPLACE PACKAGE orders_app_pkg

IS

PROCEDURE show_app_context;

PROCEDURE set_app_context;

FUNCTION the_predicate

(p_schema VARCHAR2, p_name VARCHAR2)

RETURN VARCHAR2;

END orders_app_pkg; -- package spec

/

Step 2: Creating the Package

Implementing a Policy (continued)
Step 2: Create a Package
In the OE schema, the ORDERS_APP_PKG is created. This package contains three routines:
• show_app_context: For learning and testing purposes, this procedure displays a

context attribute and value.
• set_app_context: This procedure sets a context attribute to a specific value.
• the_predicate: This function builds the predicate (the WHERE clause) that controls the

rows visible in the CUSTOMERS table to a user. (Note that this function requires two input
parameters. An error occurs when the policy is implemented if you exclude these two
parameters.)

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 6 - 17

Implementing a Policy (continued)
Step 2: Create a Package (continued)

CREATE OR REPLACE PACKAGE BODY orders_app_pkg
IS

c_context CONSTANT VARCHAR2(30) := 'ORDER_CTX';
c_attrib CONSTANT VARCHAR2(30) := 'ACCOUNT_MGR';

PROCEDURE show_app_context
IS
BEGIN

DBMS_OUTPUT.PUT_LINE('Type: ' || c_attrib ||
' - ' || SYS_CONTEXT(c_context, c_attrib));

END show_app_context;

PROCEDURE set_app_context
IS

v_user VARCHAR2(30);
BEGIN

SELECT user INTO v_user FROM dual;
DBMS_SESSION.SET_CONTEXT

(c_context, c_attrib, v_user);
END set_app_context;

FUNCTION the_predicate
(p_schema VARCHAR2, p_name VARCHAR2)
RETURN VARCHAR2
IS

v_context_value VARCHAR2(100) :=
SYS_CONTEXT(c_context, c_attrib);

v_restriction VARCHAR2(2000);
BEGIN

IF v_context_value LIKE 'AM%' THEN
v_restriction :=
'ACCOUNT_MGR_ID =
SUBSTR(''' || v_context_value || ''', 3, 3)';

ELSE
v_restriction := null;

END IF;
RETURN v_restriction;

END the_predicate;

END orders_app_pkg; -- package body
/

Note that the THE_PREDICATE function builds the WHERE clause and stores it in the
V_RESTRICTION variable. If the SYS_CONTEXT function returns an attribute value that starts
with AM, the WHERE clause is built with ACCOUNT_MGR_ID = the last three characters of the
attribute value. If the user is AM145, the WHERE clause will be:

WHERE account_mgr_id = 145

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 6 - 18

Copyright © 2008, Oracle. All rights reserved.

Step 3: Defining the Policy

Use the DBMS_RLS package:
• It contains the fine-grained access administrative interface.
• It adds a fine-grained access control policy to a table or

view.
• You use the ADD_POLICY procedure to add a fine-grained

access control policy to a table or view.

Security
policies

ADD_POLICY oe_access_policy

Implementing a Policy (continued)
The DBMS_RLS package contains the fine-grained access control administrative interface. The
package holds several procedures. But the package by itself does nothing until you add a policy.
To add a policy, you use the ADD_POLICY procedure within the DBMS_RLS package.
Note: DBMS_RLS is available only with the Enterprise Edition.
Step 3: Define the Policy
The DBMS_RLS.ADD_POLICY procedure adds a fine-grained access control policy to a table
or view. The procedure causes the current transaction, if any, to commit before the operation is
carried out. However, this does not cause a commit first if it is inside a DDL event trigger. These
are the parameters for the ADD_POLICY procedure:

DBMS_RLS.ADD_POLICY (
object_schema IN VARCHAR2 := NULL,
object_name IN VARCHAR2,
policy_name IN VARCHAR2,
function_schema IN VARCHAR2 := NULL,
policy_function IN VARCHAR2,
statement_types IN VARCHAR2 := NULL,
update_check IN BOOLEAN := FALSE,
enable IN BOOLEAN := TRUE);

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 6 - 19

Implementing a Policy (continued)
Step 3: Define the Policy (continued)

The following is a list of the procedures contained in the DBMS_RLS package. For detailed
information, refer to the PL/SQL Packages and Types Reference 11g Release 1 (11.1).

Parameter Description
OBJECT_SCHEMA Schema containing the table or view (logon user, if NULL).
OBJECT_NAME Name of the table or view to which the policy is added.

POLICY_NAME Name of the policy to be added. For any table of view, each
POLICY_NAME must be unique.

FUNCTION_SCHEMA Schema of the policy function (logon user, if NULL).
POLICY_FUNCTION Name of the function that generates a predicate for the policy. If the

function is defined within a package, the name of the package must
be present.

STATEMENT_TYPES Statement types that the policy will apply. It can be any combination
of SELECT, INSERT, UPDATE, and DELETE. The default is to
apply all these statement types to the policy.

UPDATE_CHECK Optional argument for the INSERT or UPDATE statement types.
The default is FALSE. Setting update_check to TRUE causes the
server to also check the policy against the value after INSERT or
UPDATE.

ENABLE Indicates whether the policy is enabled when it is added. The default
is TRUE.

Procedure Description
ADD_POLICY Adds a fine-grained access control policy to a table or view
DROP_POLICY Drops a fine-grained access control policy from a table or view
REFRESH_POLICY Causes all the cached statements associated with the policy to be

reparsed
ENABLE_POLICY Enables or disables a fine-grained access control policy
CREATE_POLICY_GROUP Creates a policy group
ADD_GROUPED_POLICY Adds a policy associated with a policy group
ADD_POLICY_CONTEXT Adds the context for the active application
DELETE_POLICY_GROUP Deletes a policy group
DROP_GROUPED_POLICY Drops a policy associated with a policy group
DROP_POLICY_CONTEXT Drops a driving context from the object so that it has one less

driving context
ENABLE_GROUPED_POLICY Enables or disables a row-level group security policy
REFRESH_GROUPED_POLICY Reparses the SQL statements associated with a refreshed policy

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 6 - 20

Copyright © 2008, Oracle. All rights reserved.

CONNECT /as sysdba

DECLARE
BEGIN
DBMS_RLS.ADD_POLICY (
'OE',
'CUSTOMERS',
'OE_ACCESS_POLICY',
'OE',
'ORDERS_APP_PKG.THE_PREDICATE',
'SELECT, UPDATE, DELETE',
FALSE,
TRUE);

END;
/

Step 3: Defining the Policy

Object schema
Table name
Policy name
Function schema
Policy function
Statement types
Update check
Enabled

Implementing a Policy (continued)
Step 3: Define the Policy (continued)
The security policy OE_ACCESS_POLICY is created and added with the
DBMS_RLS.ADD_POLICY procedure. The predicate function that defines how the policy is to
be implemented is associated with the policy being added.
This example specifies that whenever a SELECT, UPDATE, or DELETE statement on the
OE.CUSTOMERS table is executed, the predicate function return result is appended to the
WHERE clause.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 6 - 21

Copyright © 2008, Oracle. All rights reserved.

CONNECT /as sysdba

CREATE OR REPLACE TRIGGER set_id_on_logon

AFTER logon on DATABASE

BEGIN

oe.orders_app_pkg.set_app_context;

END;

/

Step 4: Setting Up a Logon Trigger

Create a database trigger that executes whenever anyone logs
on to the database:

Implementing a Policy (continued)
Step 4: Set Up a Logon Trigger
After the context is created, the security package is defined, the predicate is defined, and the
policy is defined, you create a logon trigger to implement fine-grained access control. This
trigger causes the context to be set as each user is logged on.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 6 - 22

Copyright © 2008, Oracle. All rights reserved.

CONNECT as OE
SELECT COUNT(*), account_mgr_id
FROM customers
GROUP BY account_mgr_id;

COUNT(*) ACCOUNT_MGR_ID
---------- --------------

111 145
76 147
58 148
74 149
1

Example Results

Data in the CUSTOMERS table:

CONNECT AM148/oracle
SELECT customer_id, customer_last_name
FROM oe.customers;

CUSTOMER_ID CUSTOMER_LAST_NAME
----------- -----------------
...
58 rows selected.

Example Results
The AM148 user who logs on sees only those rows in the CUSTOMERS table that are defined by
the predicate function. The user can issue SELECT, UPDATE, and DELETE statements against
the CUSTOMERS table, but only the rows defined by the predicate function can be manipulated.

UPDATE oe.customers
SET credit_limit = credit_limit + 5000
WHERE customer_id = 101;

0 rows updated.

The AM148 user does not have access to customer ID 101. Customer ID 101 has the account
manager of 145. Any updates, deletes, or selects attempted by user AM148 on customers that do
not have him or her as an account manager are not performed. It is as though these customers do
not exist.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 6 - 23

Copyright © 2008, Oracle. All rights reserved.

Data Dictionary Views

• USER_POLICIES
• ALL_POLICIES
• DBA_POLICIES
• ALL_CONTEXT
• DBA_CONTEXT

Data Dictionary Views
You can query the data dictionary views to find information about the policies available in your
schema.

View Description
USER_POLICIES All policies owned by the current schema
ALL_POLICIES All policies owned or accessible by the current schema

DBA_POLICIES All policies in the database (its columns are the same as those in
ALL_POLICIES)

ALL_CONTEXT All active context namespaces defined in the session
DBA_CONTEXT All context namespace information (active and inactive)

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 6 - 24

Copyright © 2008, Oracle. All rights reserved.

CONNECT AS AM148

SELECT *
FROM all_context;

NAMESPACE SCHEMA PACKAGE
--------------- --------- ----------
ORDER_CTX OE ORDERS_APP_PKG

Using the ALL_CONTEXT Dictionary View

Use ALL_CONTEXT to see the active context namespaces
defined in your session:

Using the ALL_CONTEXT Dictionary View
You can use the ALL_CONTEXT dictionary view to view information about the contexts to
which you have access. In the slide, the NAMESPACE column is equivalent to the context name.
You can use the ALL_POLICIES dictionary view to view information about the policies to
which you have access. In the following example, information is shown about the
OE_ACCESS_POLICY policy.

SELECT object_name, policy_name, pf_owner, package,
function, sel, ins, upd, del

FROM all_policies;

OBJECT_NAME POLICY_NAME
---------------------------- ----------------------------
PF_OWNER PACKAGE
---------------------------- ----------------------------
FUNCTION SEL INS UPD DEL
---------------------------- --- --- --- ---
CUSTOMERS OE_ACCESS_POLICY
OE ORDERS_APP_PKG
THE_PREDICATE YES NO YES YES

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 6 - 25

Copyright © 2008, Oracle. All rights reserved.

Policy Groups

• Indicate a set of policies that belong to an application
• Are set up by a DBA through an application context called a

driving context
• Use the DBMS_RLS package to administer the security

policies

ADD_POLICY_GROUP

Policy Groups
Policy groups were introduced in Oracle9i, release 1 (9.0.1). The DBA designates an application
context, called a driving context, to indicate the policy group in effect. When tables or views are
accessed, the fine-grained access control engine looks up the driving context to determine the
policy group in effect and enforces all associated policies that belong to that policy group.
The PL/SQL DBMS_RLS package enables you to administer your security policies and groups.
Using this package, you can add, drop, enable, disable, and refresh the policy groups that you
create.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 6 - 26

Copyright © 2008, Oracle. All rights reserved.

More About Policies

• SYS_DEFAULT is the default policy group:
– The SYS_DEFAULT group may or may not

contain policies.
– All policies belong to SYS_DEFAULT by default.
– You cannot drop the SYS_DEFAULT policy group.

• Use DBMS_RLS.CREATE_POLICY_GROUP to create a new
group.

• Use DBMS_RLS.ADD_GROUPED_POLICY to add a policy
associated with a policy group.

• You can apply multiple driving contexts to the same table or
view.

More About Policies
A policy group is a set of security policies that belong to an application. You can designate an
application context (known as a driving context) to indicate the policy group in effect. When the
tables or views are accessed, the server looks up the driving context to determine the policy
group in effect. It enforces all associated policies that belong to that policy group.
By default, all policies belong to the SYS_DEFAULT policy group. The policies defined in this
group for a particular table or view are always executed along with the policy group specified by
the driving context. The SYS_DEFAULT policy group may or may not contain policies. If you
attempt to drop the SYS_DEFAULT policy group, an error is raised. If you add policies
associated with two or more objects to the SYS_DEFAULT policy group, each such object has a
separate SYS_DEFAULT policy group associated with it.
For example, the CUSTOMERS table in the OE schema has one SYS_DEFAULT policy group,
and the ORDERS table in the OE schema has a different SYS_DEFAULT policy group associated
with it.

SYS_DEFAULT
- policy1 (OE/CUSTOMERS)
- policy3 (OE/CUSTOMERS)
SYS_DEFAULT
- policy2 (OE/ORDERS)

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 6 - 27

More About Policies (continued)
When adding a policy to a table or view, you can use the
DBMS_RLS.ADD_GROUPED_POLICY interface to specify the group to which the policy
belongs. To specify which policies are effective, you can add a driving context using the
DBMS_RLS.ADD_POLICY_CONTEXT interface. If the driving context returns an unknown
policy group, an error is returned.
If the driving context is not defined, all policies are executed. Likewise, if the driving context is
NULL, the policies from all policy groups are enforced. Thus, an application that accesses the
data cannot bypass the security setup module (that sets up the application context) to avoid
applicable policies.
You can apply multiple driving contexts to the same table or view, and each of them are
processed individually. Thus, you can configure multiple active sets of policies to be enforced.
You can create a new policy by using the DBMS_RLS package either from the command line or
programmatically, or you can access the Oracle Policy Manager graphical user interface in
Oracle Enterprise Manager.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 6 - 28

Copyright © 2008, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Describe the process of fine-grained access control
• Implement and test fine-grained access control

Security
policies

ValueAttribute

Context

Attached
to a

session

Associated
with a

packageSession

Implements

Summary
In this lesson, you should have learned about fine-grained access control and the steps required
to implement a virtual private database.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 6 - 29

Copyright © 2008, Oracle. All rights reserved.

Practice 6: Overview

This practice covers the following topics:
• Creating an application context
• Creating a policy
• Creating a logon trigger
• Implementing a virtual private database
• Testing the virtual private database

Practice 6: Overview
In this practice, you implement and test fine-grained access control.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 6 - 30

Practice 6: Implementing Fine-Grained Access Control for VPD
In this practice, you define an application context and security policy to implement the
policy: “Sales Representatives can see only their own order information in the ORDERS table.”
You create sales representative IDs to test the success of your implementation.
Examine the definition of the ORDERS table and the ORDER count for each sales representative:

DESCRIBE orders
Name Null? Type
------------------ -------- --------------------------------
ORDER_ID NOT NULL NUMBER(12)
ORDER_DATE NOT NULL TIMESTAMP(6) WITH LOCAL TIME ZONE
ORDER_MODE VARCHAR2(8)
CUSTOMER_ID NOT NULL NUMBER(6)
ORDER_STATUS NUMBER(2)
ORDER_TOTAL NUMBER(8,2)
SALES_REP_ID NUMBER(6)
PROMOTION_ID NUMBER(6)

SELECT sales_rep_id, count(*)
FROM orders
GROUP BY sales_rep_id;

SALES_REP_ID COUNT(*)
------------ ----------

153 5
154 10
155 5
156 5
158 7
159 7
160 6
161 13
163 12

35
10 rows selected.

1. Use your OE connection. Examine and then run the lab_06_01.sql script.
This script creates the sales representative ID accounts with appropriate privileges to access
the database.

2. Set up an application context:
a. Connect to the database as SYSDBA before creating this context.
b. Create an application context named sales_orders_ctx.
c. Associate this context to the oe.sales_orders_pkg.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 6 - 31

Practice 6 (continued)
3. Connect as OE.

a. Examine this package specification:
CREATE OR REPLACE PACKAGE sales_orders_pkg
IS
PROCEDURE set_app_context;
FUNCTION the_predicate
(p_schema VARCHAR2, p_name VARCHAR2)
RETURN VARCHAR2;

END sales_orders_pkg; -- package spec
/

b. Create this package specification and the package body in the OE schema.
c. When you create the package body, set up two constants as follows:

c_context CONSTANT VARCHAR2(30) := 'SALES_ORDERS_CTX';
c_attrib CONSTANT VARCHAR2(30) := 'SALES_REP';

d. Use these constants in the SET_APP_CONTEXT procedure to set the application
context to the current user.

4. Connect as SYSDBA and define the policy.
a. Use DBMS_RLS.ADD_POLICY to define the policy.
b. Use these specifications for the parameter values:

object_schema OE
object_name ORDERS
policy_name OE_ORDERS_ACCESS_POLICY
function_schema OE
policy_function SALES_ORDERS_PKG.THE_PREDICATE
statement_types SELECT, INSERT, UPDATE, DELETE
update_check FALSE,
enable TRUE);

5. Connect as SYSDBA and create a logon trigger to implement fine-grained access control.
You can call the trigger SET_ID_ON_LOGON. This trigger causes the context to be set as
each user is logged on.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 6 - 32

Practice 6 (continued)
6. Test the fine-grained access implementation. Connect as your SR user and query the
ORDERS table. For example, your results should match:

CONNECT sr153/oracle

SELECT sales_rep_id, COUNT(*)
FROM orders
GROUP BY sales_rep_id;

SALES_REP_ID COUNT(*)
------------ ----------

153 5

CONNECT sr154/oracle

SELECT sales_rep_id, COUNT(*)
FROM orders
GROUP BY sales_rep_id;

SALES_REP_ID COUNT(*)
------------ ----------

154 10

Note
During debugging, you may need to disable or remove some of the objects created for this
lesson.

• If you need to disable the logon trigger, issue this command:
ALTER TRIGGER set_id_on_logon DISABLE;

• If you need to remove the policy that you created, issue this command:
EXECUTE DBMS_RLS.DROP_POLICY('OE', 'ORDERS', -
'OE_ORDERS_ACCESS_POLICY')

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Copyright © 2008, Oracle. All rights reserved.

Manipulating Large Objects

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 7 - 2

Copyright © 2008, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:
• Compare and contrast LONG and large object (LOB) data

types
• Create and maintain LOB data types
• Differentiate between internal and external LOBs
• Use the DBMS_LOB PL/SQL package
• Describe the use of temporary LOBs

Objectives
Databases have long been used to store large objects. However, the mechanisms built into
databases have never been as useful as the large object (LOB) data types that have been provided
since Oracle8. This lesson describes the characteristics of the new data types, comparing and
contrasting them with the earlier data types. Examples, syntax, and issues regarding the LOB
types are also presented.
Note: A LOB is a data type and should not be confused with an object type.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 7 - 3

Copyright © 2008, Oracle. All rights reserved.

Lesson Agenda

• Introduction to LOBs
• Managing BFILEs by using the DBMS_LOB package
• Migrating LONG data types to LOBs
• Manipulating LOB data
• Using temporary LOBs

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 7 - 4

Copyright © 2008, Oracle. All rights reserved.

What Is a LOB?

LOBs are used to store large, unstructured data such as text,
graphic images, films, and sound waveforms.

Photo (BLOB)

“Four score and seven years
ago, our forefathers brought
forth upon this continent, a
new nation, conceived in
LIBERTY, and dedicated to the
proposition that all men are
created equal.”

Text (CLOB)

Movie (BFILE)

LOB: Overview
A LOB is a data type that is used to store large, unstructured data such as text, graphic images,
video clippings, and so on. Structured data, such as a customer record, may be a few hundred
bytes large, but even small amounts of multimedia data can be thousands of times larger. Also,
multimedia data may reside in operating system (OS) files, which may need to be accessed from
a database.
There are four large object data types:
• BLOB represents a binary large object, such as a video clip.
• CLOB represents a character large object.
• NCLOB represents a multiple-byte character large object.
• BFILE represents a binary file stored in an OS binary file outside the database. The BFILE

column or attribute stores a file locator that points to the external file.
LOBs are characterized in two ways, according to their interpretations by the Oracle server
(binary or character) and their storage aspects. LOBs can be stored internally (inside the
database) or in host files. There are two categories of LOBs:

• Internal LOBs (CLOB, NCLOB, BLOB): Stored in the database
• External files (BFILE): Stored outside the database

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 7 - 5

LOB: Overview (continued)
Oracle Database 10g performs implicit conversion between CLOB and VARCHAR2 data types.
The other implicit conversions between LOBs are not possible. For example, if the user creates a
table T with a CLOB column and a table S with a BLOB column, the data is not directly
transferable between these two columns.
BFILEs can be accessed only in read-only mode from an Oracle server.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 7 - 6

Copyright © 2008, Oracle. All rights reserved.

Contrasting LONG and LOB Data Types

LONG and LONG RAW

Single LONG column per table

Up to 2 GB

SELECT returns data

Data stored inline

Sequential access to data

LOB

Multiple LOB columns per table

Up to 4 GB

SELECT returns locator

Data stored inline or out-of-line

Random access to data

LONG and LOB Data Types
The LONG and LONG RAW data types were previously used for unstructured data, such as binary
images, documents, or geographical information. These data types are superseded by the LOB
data types. Oracle Database 10g provides a LONG-to-LOB API to migrate from LONG columns
to LOB columns. The following bulleted list compares the LOB functionality with the older
types, where LONGs refer to LONG and LONG RAW, and LOBs refer to all LOB data types:

• A table can have multiple LOB columns and object type attributes. A table can have only
one LONG column.

• The maximum size of LONGs is 2 GB; LOBs can be up to 4 GB.
• LOBs return the locator; LONGs return the data.
• LOBs store a locator in the table and the data in a different segment, unless the data is less

than 4,000 bytes; LONGs store all data in the same data block. In addition, LOBs allow data
to be stored in a separate segment and tablespace, or in a host file.

• LOBs can be object type attributes; LONGs cannot be object type attributes.
• LOBs support random piecewise access to the data through a file-like interface; LONGs are

restricted to sequential piecewise access.
The TO_LOB function can be used to convert LONG and LONG RAW values in a column to LOB
values. You use this in the SELECT list of a subquery in an INSERT statement.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 7 - 7

Copyright © 2008, Oracle. All rights reserved.

Components of a LOB

The LOB column stores a locator to the LOB’s value.

LOB locator

LOB column
of a table

LOB value

Components of a LOB
There are two parts to a LOB:
• LOB value: The data that constitutes the real object being stored
• LOB locator: A pointer to the location of the LOB value that is stored in the database

Regardless of where the LOB value is stored, a locator is stored in the row. You can think of a
LOB locator as a pointer to the actual location of the LOB value.
A LOB column does not contain the data; it contains the locator of the LOB value.
When a user creates an internal LOB, the value is stored in the LOB segment and a locator to the
out-of-line LOB value is placed in the LOB column of the corresponding row in the table.
External LOBs store the data outside the database, so only a locator to the LOB value is stored in
the table.
To access and manipulate LOBs without SQL data manipulation language (DML), you must
create a LOB locator. The programmatic interfaces operate on the LOB values by using these
locators in a manner similar to OS file handles.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 7 - 8

Copyright © 2008, Oracle. All rights reserved.

Internal LOBs

The LOB value is stored in the database.

“Four score and seven years ago,

our forefathers brought forth upon

this continent, a new nation,

conceived in LIBERTY, and dedicated

to the proposition that all men

are created equal.”

CLOB BLOB

Internal LOBs
An internal LOB is stored in the Oracle server. A BLOB, NCLOB, or CLOB can be one of the
following:

• An attribute of a user-defined type
• A column in a table
• A bind or host variable
• A PL/SQL variable, parameter, or result

Internal LOBs can take advantage of Oracle features, such as:
• Concurrency mechanisms
• Redo logging and recovery mechanisms
• Transactions with COMMIT or ROLLBACK

The BLOB data type is interpreted by the Oracle server as a bitstream, similar to the LONG RAW
data type.
The CLOB data type is interpreted as a single-byte character stream.
The NCLOB data type is interpreted as a multiple-byte character stream, based on the byte length
of the database national character set.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 7 - 9

Copyright © 2008, Oracle. All rights reserved.

Managing Internal LOBs

• To interact fully with LOB, file-like interfaces are provided in:
– PL/SQL package DBMS_LOB
– Oracle Call Interface (OCI)
– Oracle Objects for object linking and embedding (OLE)
– Pro*C/C++ and Pro*COBOL precompilers
– Java Database Connectivity (JDBC)

• The Oracle server provides some support for LOB
management through SQL.

Managing Internal LOBs
To manage an internal LOB, perform the following steps:

1. Create and populate the table containing the LOB data type.
2. Declare and initialize the LOB locator in the program.
3. Use SELECT FOR UPDATE to lock the row containing the LOB into the LOB locator.
4. Manipulate the LOB with DBMS_LOB package procedures, OCI calls, Oracle Objects for

OLE, Oracle precompilers, or JDBC by using the LOB locator as a reference to the LOB
value. You can also manage LOBs through SQL.

5. Use the COMMIT command to make any changes permanent.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 7 - 10

Copyright © 2008, Oracle. All rights reserved.

Lesson Agenda

• Introduction to LOBs
• Managing BFILEs by using the DBMS_LOB package
• Migrating LONG data types to LOBs
• Manipulating LOB data
• Using temporary LOBs

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 7 - 11

Copyright © 2008, Oracle. All rights reserved.

What Are BFILEs?

The BFILE data type supports an external or file-based large
object as:
• Attributes in an object type
• Column values in a table

Movie (BFILE)

What Are BFILEs?
BFILEs are external large objects (LOBs) stored in OS files that are external to database tables.
The BFILE data type stores a locator to the physical file. A BFILE can be in GIF, JPEG,
MPEG, MPEG2, text, or other formats. The external LOBs may be located on hard disks, CD-
ROMs, photo CDs, or other media, but a single LOB cannot extend from one medium or device
to another. The BFILE data type is available so that database users can access the external file
system. Oracle Database 10g provides:

• Definition of BFILE objects
• Association of BFILE objects with the corresponding external files
• Security for BFILEs

The remaining operations that are required for using BFILEs are possible through the
DBMS_LOB package and OCI. BFILEs are read-only; they do not participate in transactions.
Support for integrity and durability must be provided by the operating system. The file must be
created and placed in the appropriate directory, giving the Oracle process privileges to read the
file. When the LOB is deleted, the Oracle server does not delete the file. Administration of the
files and the OS directory structures can be managed by the DBA, system administrator, or user.
The maximum size of an external large object depends on the operating system but cannot
exceed 4 GB.
Note: BFILEs are available with the Oracle8 database and later releases.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 7 - 12

Copyright © 2008, Oracle. All rights reserved.

Securing BFILEs

Access
permissions

User

Movie (BFILE)

Securing BFILEs
Unauthenticated access to files on a server presents a security risk. Oracle Database 10g can act
as a security mechanism to shield the operating system from unsecured access while removing
the need to manage additional user accounts on an enterprise computer system.
File Location and Access Privileges
The file must reside on the machine where the database exists. A timeout to read a nonexistent
BFILE is based on the OS value.
You can read a BFILE in the same way that you read an internal LOB. However, there could be
restrictions related to the file itself, such as:

• Access permissions
• File system space limits
• Non-Oracle manipulations of files
• OS maximum file size

Oracle Database 10g does not provide transactional support on BFILEs. Any support for
integrity and durability must be provided by the underlying file system and the OS. Oracle
backup and recovery methods support only the LOB locators, not the physical BFILEs.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 7 - 13

Copyright © 2008, Oracle. All rights reserved.

What Is a DIRECTORY?

DIRECTORY

LOB_PATH =
'/oracle/lob/'

User

Movie (BFILE)

What Is a DIRECTORY?
A DIRECTORY is a nonschema database object that enables the administration of access and
usage of BFILEs in Oracle Database 10g.
A DIRECTORY specifies an alias for a directory on the file system of the server under which a
BFILE is located. By granting users suitable privileges for these items, you can provide secure
access to files in the corresponding directories on a user-by-user basis (certain directories can be
made read-only, inaccessible, and so on).
Furthermore, these directory aliases can be used while referring to files (open, close, read, and so
on) in PL/SQL and OCI. This provides application abstraction from hard-coded path names and
gives flexibility in portably managing file locations.
The DIRECTORY object is owned by SYS and created by the DBA (or a user with the CREATE
ANY DIRECTORY privilege). The directory objects have object privileges, unlike other
nonschema objects. Privileges to the DIRECTORY object can be granted and revoked. Logical
path names are not supported.
The permissions for the actual directory depend on the operating system. They may differ from
those defined for the DIRECTORY object and could change after creation of the DIRECTORY
object.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 7 - 14

Copyright © 2008, Oracle. All rights reserved.

Guidelines for Creating
DIRECTORY Objects

• Do not create DIRECTORY objects on paths with database
files.

• Limit the number of people who are given the following
system privileges:

– CREATE ANY DIRECTORY

– DROP ANY DIRECTORY

• All DIRECTORY objects are owned by SYS.
• Create directory paths and properly set permissions before

using the DIRECTORY object so that the Oracle server can
read the file.

Guidelines for Creating DIRECTORY Objects
To associate an OS file with a BFILE, you should first create a DIRECTORY object that is an
alias for the full path name to the OS file.
Create DIRECTORY objects by using the following guidelines:

• Directories should point to paths that do not contain database files, because tampering with
these files could corrupt the database. Currently, only the READ privilege can be given for a
DIRECTORY object.

• The CREATE ANY DIRECTORY and DROP ANY DIRECTORY system privileges should be
used carefully and not granted to users indiscriminately.

• DIRECTORY objects are not schema objects; all are owned by SYS.
• Create the directory paths with appropriate permissions on the OS before creating the
DIRECTORY object. Oracle does not create the OS path.

If you migrate the database to a different OS, you may need to change the path value of the
DIRECTORY object.
Information about the DIRECTORY object that you create by using the CREATE DIRECTORY
command is stored in the DBA_DIRECTORIES and ALL_DIRECTORIES data dictionary
views.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 7 - 15

Copyright © 2008, Oracle. All rights reserved.

Using the DBMS_LOB Package

• Working with LOBs often requires the use of the Oracle-
supplied DBMS_LOB package.

• DBMS_LOB provides routines to access and manipulate
internal and external LOBs.

• LOB data can be retrieved directly using SQL.
• In PL/SQL, you can define a VARCHAR2 for a CLOB and a
RAW for a BLOB.

Using the DBMS_LOB Package
To work with LOBs, you may need to use the DBMS_LOB package. The package does not
support any concurrency control mechanism for BFILE operations. The user is responsible for
locking the row containing the destination internal LOB before calling subprograms that involve
writing to the LOB value. These DBMS_LOB routines do not implicitly lock the row containing
the LOB.
The two constants, LOBMAXSIZE and FILE_READONLY, that are defined in the package
specification are also used in the procedures and functions of DBMS_LOB; for example, use
them to achieve the maximum level of purity in SQL expressions.
The DBMS_LOB functions and procedures can be broadly classified into two types: mutators and
observers.

• The mutators can modify LOB values: APPEND, COPY, ERASE, TRIM, WRITE,
FILECLOSE, FILECLOSEALL, and FILEOPEN.

• The observers can read LOB values: COMPARE, FILEGETNAME, INSTR, GETLENGTH,
READ, SUBSTR, FILEEXISTS, and FILEISOPEN.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 7 - 16

Copyright © 2008, Oracle. All rights reserved.

Using the DBMS_LOB Package

• Modify LOB values:
APPEND, COPY, ERASE, TRIM, WRITE, LOADFROMFILE

• Read or examine LOB values:
GETLENGTH, INSTR, READ, SUBSTR

• Specific to BFILEs:
FILECLOSE, FILECLOSEALL, FILEEXISTS,
FILEGETNAME, FILEISOPEN, FILEOPEN

Using the DBMS_LOB Package (continued)
APPEND Appends the contents of the source LOB to the destination LOB
COPY Copies all or part of the source LOB to the destination LOB
ERASE Erases all or part of a LOB
LOADFROMFILE Loads BFILE data into an internal LOB
TRIM Trims the LOB value to a specified shorter length
WRITE Writes data to the LOB from a specified offset
GETLENGTH Gets the length of the LOB value
INSTR Returns the matching position of the nth occurrence of the pattern in the LOB
READ Reads data from the LOB starting at the specified offset
SUBSTR Returns part of the LOB value starting at the specified offset
FILECLOSE Closes the file
FILECLOSEALL Closes all previously opened files
FILEEXISTS Checks whether the file exists on the server
FILEGETNAME Gets the directory alias and the file name
FILEISOPEN Checks whether the file was opened using the input BFILE locators
FILEOPEN Opens a file

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 7 - 17

Copyright © 2008, Oracle. All rights reserved.

DBMS_LOB Package

• NULL parameters get NULL returns.
• Offsets:

– BLOB, BFILE: Measured in bytes
– CLOB, NCLOB: Measured in characters

• There are no negative values for parameters.

Using the DBMS_LOB Routines
All functions in the DBMS_LOB package return NULL if any input parameters are NULL. All
mutator procedures in the DBMS_LOB package raise an exception if the destination LOB/BFILE
is input as NULL.
Only positive, absolute offsets are allowed. They represent the number of bytes or characters
from the beginning of the LOB data from which to start the operation. The negative offsets and
ranges that are observed in SQL string functions and operators are not allowed. Corresponding
exceptions are raised upon violation. The default value for an offset is 1, which indicates the first
byte or character in the LOB value.
Similarly, only natural number values are allowed for the amount (BUFSIZ) parameter.
Negative values are not allowed.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 7 - 18

Copyright © 2008, Oracle. All rights reserved.

DBMS_LOB.READ and DBMS_LOB.WRITE

PROCEDURE READ (

lobsrc IN BFILE|BLOB|CLOB ,

amount IN OUT BINARY_INTEGER,

offset IN INTEGER,

buffer OUT RAW|VARCHAR2)

PROCEDURE WRITE (

lobdst IN OUT BLOB|CLOB,

amount IN OUT BINARY_INTEGER,

offset IN INTEGER := 1,

buffer IN RAW|VARCHAR2) -- RAW for BLOB

DBMS_LOB.READ

Call the READ procedure to read and return piecewise a specified AMOUNT of data from a given
LOB, starting from OFFSET. An exception is raised when no more data remains to be read from
the source LOB. The value returned in AMOUNT is less than the one specified if the end of the
LOB is reached before the specified number of bytes or characters can be read. In the case of
CLOBs, the character set of data in BUFFER is the same as that in the LOB.
PL/SQL allows a maximum length of 32,767 for RAW and VARCHAR2 parameters. Ensure that
the allocated system resources are adequate to support buffer sizes for the given number of user
sessions. Otherwise, the Oracle server raises the appropriate memory exceptions.
Note: BLOB and BFILE return RAW; the others return VARCHAR2.

DBMS_LOB.WRITE

Call the WRITE procedure to write piecewise a specified AMOUNT of data into a given LOB,
from the user-specified BUFFER, starting from an absolute OFFSET from the beginning of the
LOB value.
Make sure (especially with multiple-byte characters) that the amount in bytes corresponds to the
amount of buffer data. WRITE has no means of checking whether they match, and it will write
AMOUNT bytes of the buffer contents into the LOB.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 7 - 19

Copyright © 2008, Oracle. All rights reserved.

Managing BFILEs

The DBA or the system administrator:
1. Creates an OS directory and supplies files
2. Creates a DIRECTORY object in the database
3. Grants the READ privilege on the DIRECTORY object to the

appropriate database users
The developer or the user:
4. Creates an Oracle table with a column that is defined as a

BFILE data type
5. Inserts rows into the table by using the BFILENAME

function to populate the BFILE column
6. Writes a PL/SQL subprogram that declares and initializes a

LOB locator, and reads BFILE

Managing BFILEs
Managing BFILEs requires cooperation between the database administrator and the system
administrator, and then between the developer and the user of the files.
The database or system administrator must perform the following privileged tasks:

1. Create the operating system (OS) directory (as an Oracle user), and set permissions so that
the Oracle server can read the contents of the OS directory. Load files into the OS directory.

2. Create a database DIRECTORY object that references the OS directory.
3. Grant the READ privilege on the database DIRECTORY object to the database users that

require access to it.
The designer, application developer, or user must perform the following tasks:

4. Create a database table containing a column that is defined as the BFILE data type.
5. Insert rows into the table by using the BFILENAME function to populate the BFILE

column, associating the field to an OS file in the named DIRECTORY.
6. Write PL/SQL subprograms that:

a. Declare and initialize the BFILE LOB locator
b. Select the row and column containing the BFILE into the LOB locator
c. Read the BFILE with a DBMS_LOB function, by using the locator file reference

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 7 - 20

Copyright © 2008, Oracle. All rights reserved.

Preparing to Use BFILEs

1. Create an OS directory to store the physical data files:

2. Create a DIRECTORY object by using the CREATE
DIRECTORY command:

3. Grant the READ privilege on the DIRECTORY object to the
appropriate users:

md D:\Labs\DATA_FILES\MEDIA_FILES

CREATE DIRECTORY data_files
AS 'D:\Labs\DATA_FILES\MEDIA_FILES;

GRANT READ ON DIRECTORY data_files TO OE;

Preparing to Use BFILEs
To use a BFILE within an Oracle table, you must have a table with a column of the BFILE data
type. For the Oracle server to access an external file, the server needs to know the physical
location of the file in the OS directory structure.
The database DIRECTORY object provides the means to specify the location of the BFILEs.
Use the CREATE DIRECTORY command to specify the pointer to the location where your
BFILEs are stored. You need the CREATE ANY DIRECTORY privilege.
Syntax definition: CREATE DIRECTORY dir_name AS os_path;
In this syntax, dir_name is the name of the directory database object, and os_path specifies
the location of the BFILEs.
The slide examples show the commands to set up:

• The physical directory (for example, /temp/data_files) in the OS
• A named DIRECTORY object, called data_files, that points to the physical directory in

the OS
• The READ access right on the directory to be granted to users in the database that provides

the privilege to read the BFILEs from the directory
Note: The value of the SESSION_MAX_OPEN_FILES database initialization parameter, which
is set to 10 by default, limits the number of BFILEs that can be opened in a session.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 7 - 21

Copyright © 2008, Oracle. All rights reserved.

Populating BFILE Columns with SQL

• Use the BFILENAME function to initialize a BFILE column.
The function syntax is:

• Example:
– Add a BFILE column to a table:

– Update the column using the BFILENAME function:

FUNCTION BFILENAME(directory_alias IN VARCHAR2,
filename IN VARCHAR2)

RETURN BFILE;

UPDATE customers
SET video = BFILENAME('DATA_FILES', 'Winters.avi')
WHERE customer_id = 448;

ALTER TABLE customers ADD video BFILE;

Populating BFILE Columns with SQL
The BFILENAME function is a built-in function that you use to initialize a BFILE column, by
using the following two parameters:
• directory_alias for the name of the database DIRECTORY object that references the

OS directory containing the files
• filename for the name of the BFILE to be read

The BFILENAME function creates a pointer (or LOB locator) to the external file stored in a
physical directory, which is assigned a directory alias name that is used in the first parameter of
the function. Populate the BFILE column by using the BFILENAME function in either of the
following:

• The VALUES clause of an INSERT statement
• The SET clause of an UPDATE statement

An UPDATE operation can be used to change the pointer reference target of the BFILE. A
BFILE column can also be initialized to a NULL value and updated later with the BFILENAME
function, as shown in the slide.
After the BFILE columns are associated with a file, subsequent read operations on the BFILE
can be performed by using the PL/SQL DBMS_LOB package and OCI. However, these files are
read-only when accessed through BFILEs. Therefore, they cannot be updated or deleted through
BFILEs.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 7 - 22

Copyright © 2008, Oracle. All rights reserved.

CREATE PROCEDURE set_video(
dir_alias VARCHAR2, custid NUMBER) IS
filename VARCHAR2(40);
file_ptr BFILE;
CURSOR cust_csr IS
SELECT cust_first_name FROM customers
WHERE customer_id = custid FOR UPDATE;

BEGIN
FOR rec IN cust_csr LOOP
filename := rec.cust_first_name || '.gif';
file_ptr := BFILENAME(dir_alias, filename);
DBMS_LOB.FILEOPEN(file_ptr);
UPDATE customers SET video = file_ptr
WHERE CURRENT OF cust_csr;

DBMS_OUTPUT.PUT_LINE('FILE: ' || filename ||
' SIZE: ' || DBMS_LOB.GETLENGTH(file_ptr));
DBMS_LOB.FILECLOSE(file_ptr);

END LOOP;
END set_video;

Populating a BFILE Column with PL/SQL

Populating a BFILE Column with PL/SQL
The slide example shows a PL/SQL procedure called set_video, which accepts the name of
the directory alias referencing the OS file system as a parameter, and a customer ID. The
procedure performs the following tasks:

• Uses a cursor FOR loop to obtain each customer record
• Sets the filename by appending .gif to the customer’s first_name
• Creates an in-memory LOB locator for the BFILE in the file_ptr variable
• Calls the DBMS_LOB.FILEOPEN procedure to verify whether the file exists, and to

determine the size of the file by using the DBMS_LOB.GETLENGTH function
• Executes an UPDATE statement to write the BFILE locator value to the video BFILE

column
• Displays the file size returned from the DBMS_LOB.GETLENGTH function
• Closes the file by using the DBMS_LOB.FILECLOSE procedure

Suppose that you execute the following call:
EXECUTE set_video('DATA_FILES', 844)

The sample result is:
FILE: Alice.gif SIZE: 2619802

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 7 - 23

Copyright © 2008, Oracle. All rights reserved.

CREATE OR REPLACE FUNCTION get_filesize(p_file_ptr IN
OUT BFILE)
RETURN NUMBER IS
v_file_exists BOOLEAN;
v_length NUMBER:= -1;

BEGIN
v_file_exists := DBMS_LOB.FILEEXISTS(p_file_ptr) = 1;
IF v_file_exists THEN
DBMS_LOB.FILEOPEN(p_file_ptr);
v_length := DBMS_LOB.GETLENGTH(p_file_ptr);
DBMS_LOB.FILECLOSE(p_file_ptr);

END IF;
RETURN v_length;

END;
/

Using DBMS_LOB Routines with BFILEs

The DBMS_LOB.FILEEXISTS function can check whether the
file exists in the OS. The function:
• Returns 0 if the file does not exist
• Returns 1 if the file does exist

Using DBMS_LOB Routines with BFILEs
The set_video procedure on the previous page terminates with an exception if a file does not
exist. To prevent the loop from prematurely terminating, you could create a function, such as
get_filesize, to determine whether a given BFILE locator references a file that actually
exists on the server’s file system. The DBMS_LOB.FILEEXISTS function accepts the BFILE
locator as a parameter and returns an INTEGER with:

• A value 0 if the physical file does not exist
• A value 1 if the physical file exists

If the BFILE parameter is invalid, one of the following three exceptions may be raised:
• NOEXIST_DIRECTORY if the directory does not exist
• NOPRIV_DIRECTORY if the database processes do not have privileges for the directory
• INVALID_DIRECTORY if the directory was invalidated after the file was opened

In the get_filesize function, the output of the DBMS_LOB.FILEEXISTS function is
compared with value 1 and the result of the condition sets the BOOLEAN variable
file_exists. The DBMS_LOB.FILEOPEN call is performed only if the file exists, thereby
preventing unwanted exceptions from occurring. The get_filesize function returns a value
of –1 if a file does not exist; otherwise, it returns the size of the file in bytes. The caller can take
appropriate action with this information.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 7 - 24

Copyright © 2008, Oracle. All rights reserved.

Lesson Agenda

• Introduction to LOBs
• Managing BFILEs by using the DBMS_LOB package
• Migrating LONG data types to LOBs
• Manipulating LOB data
• Using temporary LOBs

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 7 - 25

Copyright © 2008, Oracle. All rights reserved.

Migrating from LONG to LOB

Oracle Database 10g enables the migration of LONG columns to
LOB columns.
• Data migration consists of the procedure to move existing

tables containing LONG columns to use LOBs:

• Application migration consists of changing applications using
LONG data types to use LOB data types instead.

ALTER TABLE [<schema>.] <table_name>
MODIFY (<long_col_name> {CLOB | BLOB | NCLOB})

Migrating from LONG to LOB
Oracle Database 10g supports LONG-to-LOB migration by using an API. In data migration,
existing tables that contain LONG columns need to be moved to use LOB columns. This can be
done by using the ALTER TABLE command. You can use the syntax shown to:

• Modify a LONG column to a CLOB or an NCLOB column
• Modify a LONG RAW column to a BLOB column

The constraints of the LONG column (NULL and NOT NULL are the only allowed constraints) are
maintained for the new LOB columns. The default value specified for the LONG column is also
copied to the new LOB column. For example, you have the following table:

CREATE TABLE long_tab (id NUMBER, long_col LONG);

To change the long_col column in the long_tab table to the CLOB data type, use:
ALTER TABLE long_tab MODIFY (long_col CLOB);

For information about the limitations on LONG-to-LOB migration, refer to Oracle Database
Application Developer’s Guide - Large Objects. In application migration, the existing LONG
applications change to using LOBs. You can use SQL and PL/SQL to access LONGs and LOBs.
The LONG-to-LOB migration API is provided for both OCI and PL/SQL.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 7 - 26

Copyright © 2008, Oracle. All rights reserved.

Migrating from LONG to LOB

• Implicit conversion: From LONG (LONG RAW) or a
VARCHAR2(RAW) variable to a CLOB (BLOB) variable, and
vice versa.

• Explicit conversion:
– TO_CLOB() converts LONG, VARCHAR2, and CHAR to CLOB.
– TO_BLOB() converts LONG RAW and RAW to BLOB.

• Function and procedure parameter passing:
– CLOBs and BLOBs are passed as actual parameters.
– VARCHAR2, LONG, RAW, and LONG RAW are formal parameters,

and vice versa.
• LOB data is acceptable in most of the SQL and PL/SQL

operators and built-in functions.

Migrating from LONG to LOB (continued)
With the new LONG-to-LOB API introduced in Oracle Database 10g, data from CLOB and BLOB
columns can be referenced by regular SQL and PL/SQL statements.
Implicit assignment and parameter passing: The LONG-to-LOB migration API supports
assigning a CLOB (BLOB) variable to a LONG (LONG RAW) or a VARCHAR2(RAW) variable, and
vice versa.
Explicit conversion functions: In PL/SQL, the following two new explicit conversion functions
were added in Oracle Database 10g to convert other data types to CLOB and BLOB as part of the
LONG-to-LOB migration:
• TO_CLOB()converts LONG, VARCHAR2, and CHAR to CLOB.
• TO_BLOB()converts LONG RAW and RAW to BLOB.

Note: TO_CHAR()is enabled to convert a CLOB to a CHAR type.
Function and procedure parameter passing: This enables the use of CLOBs and BLOBs as
actual parameters where VARCHAR2, LONG, RAW, and LONG RAW are formal parameters, and
vice versa. In SQL and PL/SQL built-in functions and operators, a CLOB can be passed to SQL
and PL/SQL VARCHAR2 built-in functions, behaving exactly like a VARCHAR2. Or, the
VARCHAR2 variable can be passed into DBMS_LOB APIs, acting like a LOB locator.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 7 - 27

Copyright © 2008, Oracle. All rights reserved.

Lesson Agenda

• Introduction to LOBs
• Managing BFILEs by using the DBMS_LOB package
• Migrating LONG data types to LOBs
• Manipulating LOB data
• Using temporary LOBs

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 7 - 28

Copyright © 2008, Oracle. All rights reserved.

Initializing LOB Columns Added to a Table

• Add the LOB columns to an existing table by using ALTER
TABLE.

• Create a tablespace where you will put a new table with the
LOB columns.

ALTER TABLE customers
ADD (resume CLOB, picture BLOB);

connect /as sysdba

CREATE TABLESPACE lob_tbs1
DATAFILE 'lob_tbs1.dbf' SIZE 800M REUSE
EXTENT MANAGEMENT LOCAL
UNIFORM SIZE 64M
SEGMENT SPACE MANAGEMENT AUTO;

Initializing LOB Columns Added to a Table
The contents of a LOB column are stored in the LOB segment, whereas the column in the table
contains only a reference to that specific storage area, called the LOB locator. In PL/SQL, you
can define a variable of the LOB type, which contains only the value of the LOB locator. You can
initialize the LOB locators by using the following functions:
• EMPTY_CLOB() function to a LOB locator for a CLOB column
• EMPTY_BLOB() function to a LOB locator for a BLOB column

Note: These functions create the LOB locator value and not the LOB content. In general, you use
the DBMS_LOB package subroutines to populate the content. The functions are available in
Oracle SQL DML, and are not part of the DBMS_LOB package.
LOB columns are defined by using SQL data definition language (DDL). You can add LOB
columns to an existing table by using the ALTER TABLE statement.
You can also add LOB columns to a new table. It is recommended that you create a tablespace
first, and then create the new table in that tablespace.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 7 - 29

Copyright © 2008, Oracle. All rights reserved.

Initializing LOB Columns Added to a Table

Initialize the column LOB locator value with the DEFAULT option
or the DML statements using:
• EMPTY_CLOB() function for a CLOB column
• EMPTY_BLOB() function for a BLOB column

connect oe

CREATE TABLE customer_profiles (
id NUMBER,
full_name VARCHAR2(45),
resume CLOB DEFAULT EMPTY_CLOB(),
picture BLOB DEFAULT EMPTY_BLOB())
LOB(picture) STORE AS BASICFILE
(TABLESPACE lob_tbs1);

Initializing LOB Columns Added to a Table (continued)
The slide example shows that you can use the EMPTY_CLOB() and EMPTY_BLOB()
functions in the DEFAULT option in a CREATE TABLE statement. Thus, the LOB locator values
are populated in their respective columns when a row is inserted into the table and the LOB
columns were not specified in the INSERT statement.
The CUSTOMER_PROFILES table is created. The PICTURE column holds the LOB data in the
BasicFile format, because the storage clause identifies the format. You learn about the
SecureFile format in the lesson titled “Administering SecureFile LOBs.”
You learn how to use these functions in INSERT and UPDATE statements to initialize the LOB
locator values.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 7 - 30

Copyright © 2008, Oracle. All rights reserved.

Populating LOB Columns

• Insert a row into a table with LOB columns:

• Initialize a LOB using the EMPTY_BLOB() function:

• Update a CLOB column:

INSERT INTO customer_profiles
(id, full_name, resume, picture)
VALUES (164, 'Charlotte Kazan', EMPTY_CLOB(), NULL);

UPDATE customer_profiles
SET resume = 'Date of Birth: 8 February 1951',

picture = EMPTY_BLOB()
WHERE id = 164;

UPDATE customer_profiles
SET resume = 'Date of Birth: 1 June 1956'
WHERE id = 150;

Populating LOB Columns
You can insert a value directly into a LOB column by using host variables in SQL or PL/SQL,
3GL-embedded SQL, or OCI. You can use the special EMPTY_BLOB()and EMPTY_CLOB()
functions in INSERT or UPDATE statements of SQL DML to initialize a NULL or non-NULL
internal LOB to empty. To populate a LOB column, perform the following steps:

1. Initialize the LOB column to a non-NULL value—that is, set a LOB locator pointing to an
empty or populated LOB value. This is done by using the EMPTY_BLOB()and
EMPTY_CLOB() functions.

2. Populate the LOB contents by using the DBMS_LOB package routines.
However, as shown in the slide examples, the two UPDATE statements initialize the resume
LOB locator value and populate its contents by supplying a literal value. This can also be done in
an INSERT statement. A LOB column can be updated to:

• Another LOB value
• A NULL value
• A LOB locator with empty contents by using the EMPTY_*LOB() built-in function

You can update the LOB by using a bind variable in embedded SQL. When assigning one LOB
to another, a new copy of the LOB value is created. Use a SELECT FOR UPDATE statement to
lock the row containing the LOB column before updating a piece of the LOB contents.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 7 - 31

Copyright © 2008, Oracle. All rights reserved.

Writing Data to a LOB

• Create the procedure to read the MS Word files and load
them into the LOB column.

• Call this procedure from the WRITE_LOB procedure (shown
on the next page).

CREATE OR REPLACE PROCEDURE loadLOBFromBFILE_proc
(p_dest_loc IN OUT BLOB, p_file_name IN VARCHAR2,
p_file_dir IN VARCHAR2)

IS
v_src_loc BFILE := BFILENAME(p_file_dir, p_file_name);
v_amount INTEGER := 4000;

BEGIN
DBMS_LOB.OPEN(v_src_loc, DBMS_LOB.LOB_READONLY);
v_amount := DBMS_LOB.GETLENGTH(v_src_loc);
DBMS_LOB.LOADFROMFILE(p_dest_loc, v_src_loc, v_amount);
DBMS_LOB.CLOSE(v_src_loc);

END loadLOBFromBFILE_proc;

Writing Data to a LOB
The procedure shown in the slide is used to load data into the LOB column.
Before running the LOADLOBFROMBFILE_PROC procedure, you must set a directory object
that identifies where the LOB files are stored externally. In this example, the Microsoft Word
documents are stored in the DATA_FILES directory that was created earlier in this lesson.
The LOADLOBFROMBFILE_PROC procedure is used to read the LOB data into the PICTURE
column in the CUSTOMER_PROFILES table.
In this example:
• DBMS_LOB.OPEN is used to open an external LOB in read-only mode.
• DBMS_LOB.GETLENGTH is used to find the length of the LOB value.
• DBMS_LOB.LOADFROMFILE is used to load the BFILE data into an internal LOB.
• DBMS_LOB.CLOSE is used to close the external LOB.

Note: The LOADLOBFROMBFILE_PROC procedure shown in the slide can be used to read both
SecureFile and BasicFile formats. SecureFile LOBs is discussed in the lesson titled
“Administering SecureFile LOBs.”

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 7 - 32

Copyright © 2008, Oracle. All rights reserved.

Writing Data to a LOB

Create the procedure to insert LOBs into the table:
CREATE OR REPLACE PROCEDURE write_lob
(p_file IN VARCHAR2, p_dir IN VARCHAR2)

IS
i NUMBER; v_fn VARCHAR2(15);
v_ln VARCHAR2(40); v_b BLOB;
BEGIN
DBMS_OUTPUT.ENABLE;
DBMS_OUTPUT.PUT_LINE('Begin inserting rows...');
FOR i IN 1 .. 30 LOOP
v_fn:=SUBSTR(p_file,1,INSTR(p_file,'.')-1);
v_ln:=SUBSTR(p_file,INSTR(p_file,'.')+1,LENGTH(p_file)-

INSTR(p_file,'.')-4);
INSERT INTO customer_profiles
VALUES (i, v_fn, v_ln, EMPTY_BLOB())
RETURNING picture INTO v_b;

loadLOBFromBFILE_proc(v_b,p_file, p_dir);
DBMS_OUTPUT.PUT_LINE('Row '|| i ||' inserted.');

END LOOP;
COMMIT;

END write_lob;

Writing Data to a LOB (continued)
Before you write data to the LOB column, you must make the LOB column non-NULL. The LOB
column must contain a locator that points to an empty or populated LOB value. You can
initialize a BLOB column value by using the EMPTY_BLOB()function as a default predicate.
The code shown in the slide uses the INSERT statement to initialize the locator. The
LOADLOBFROMBFILE routine is then called and the LOB column value is inserted.
The write and read performance statistics for LOB storage is captured through output messages.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 7 - 33

Copyright © 2008, Oracle. All rights reserved.

Writing Data to a LOB

set serveroutput on
set verify on
set term on
set linesize 200

timing start load_data
execute write_lob('karl.brimmer.doc', 'RESUME_FILES')
execute write_lob('monica.petera.doc', 'RESUME_FILES')
execute write_lob('david.sloan.doc', 'RESUME_FILES')
timing stop

1

2

CREATE DIRECTORY resume_files
AS 'D:\Labs\DATA_FILES\RESUMES';

Writing Data to a LOB (continued)
1. The Microsoft Word files are stored in the D:\Labs|DATA_FILES\RESUMES directory.
2. To read them into the PICTURE column in the CUSTOMER_PROFILES table, the
WRITE_LOB procedure is called and the name of the .doc files is passed as a parameter.

Note: This script is run in SQL*Plus, because TIMING is a SQL*Plus option and is not
available in SQL Developer.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 7 - 34

Writing Data to a LOB (continued)
The output is similar to the following:

timing start load_data
execute write_lob('karl.brimmer.doc', 'RESUME_FILES');
Begin inserting rows...
Row 1 inserted.
...
PL/SQL procedure successfully completed.

execute write_lob('monica.petera.doc', 'RESUME_FILES');
Begin inserting rows...
Row 1 inserted.
...
PL/SQL procedure successfully completed.

execute write_lob('david.sloan.doc', 'RESUME_FILES');
Begin inserting rows...
Row 1 inserted.
...
PL/SQL procedure successfully completed.

timing stop
timing for: load_data
Elapsed: 00:00:00.96

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 7 - 35

Copyright © 2008, Oracle. All rights reserved.

Reading LOBs from the Table

Create the procedure to read LOBs from the table:CREATE OR REPLACE PROCEDURE read_lob
IS
v_lob_loc BLOB;
CURSOR profiles_cur IS
SELECT id, full_name, resume, picture
FROM customer_profiles;

v_profiles_rec customer_profiles%ROWTYPE;
BEGIN
OPEN profiles_cur;
LOOP
FETCH profiles_cur INTO v_profiles_rec;
v_lob_loc := v_profiles_rec.picture;
DBMS_OUTPUT.PUT_LINE('The length is: '||

DBMS_LOB.GETLENGTH(v_lob_loc));
DBMS_OUTPUT.PUT_LINE('The ID is: '|| v_profiles_rec.id);
DBMS_OUTPUT.PUT_LINE('The blob is read: '||
UTL_RAW.CAST_TO_VARCHAR2(DBMS_LOB.SUBSTR(v_lob_loc,200,1)));
EXIT WHEN profiles_cur%NOTFOUND;

END LOOP;
CLOSE profiles_cur;

END;

Reading LOBs from the Table
To retrieve the records that were inserted, you can call the READ_LOB procedure:

set serveroutput on
set verify on
set term on
set linesize 200

timing start read_data
execute read_lob;
timing stop

The commands shown in the slide read back the 90 records from the CUSTOMER_PROFILES
table. For each record, the size of the LOB value plus the first 200 characters of the LOB are
displayed on the screen. A SQL*Plus timer is started to capture the total elapsed time for the
retrieval.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 7 - 36

Reading LOBs from the Table (continued)
The output is similar to the following:

The ID is: 1
� � �The blob is read: ¿ ¿ ¿ > ¿¿ � �

� �x z ¿¿¿¿ w
¿¿¿
¿¿¿
The length is: 64000
The ID is: 2

� � �The blob is read: ¿ ¿ ¿ > ¿¿ � �
� �x z ¿¿¿¿ w

...
The length is: 37376
The ID is: 30

� � �The blob is read: ¿ ¿ ¿ > ¿¿ � �
� �D F ¿¿¿¿ C

¿¿¿
¿¿¿
The length is: 37376
The ID is: 30

� � �The blob is read: ¿ ¿ ¿ > ¿¿ � �
� �D F ¿¿¿¿ C

¿¿¿
¿¿¿

…

PL/SQL procedure successfully completed.

timing stop
timing for: read_data
Elapsed: 00:00:01.09

Note: The text shown on this page is intentional. The text appears as gibberish, because it is a
binary file.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 7 - 37

Copyright © 2008, Oracle. All rights reserved.

DECLARE
v_lobloc CLOB; -- serves as the LOB locator
v_text VARCHAR2(50) := 'Resigned = 5 June 2000';
v_amount NUMBER ; -- amount to be written
v_offset INTEGER; -- where to start writing

BEGIN
SELECT resume INTO v_lobloc FROM customer_profiles
WHERE id = 164 FOR UPDATE;
v_offset := DBMS_LOB.GETLENGTH(v_lobloc) + 2;
v_amount := length(v_text);
DBMS_LOB.WRITE (v_lobloc, v_amount, v_offset, v_text);
v_text := ' Resigned = 30 September 2000';
SELECT resume INTO v_lobloc FROM customer_profiles
WHERE id = 150 FOR UPDATE;
v_amount := length(v_text);
DBMS_LOB.WRITEAPPEND(v_lobloc, v_amount, v_text);
COMMIT;

END;

Updating LOB by Using DBMS_LOB in PL/SQL

Updating LOB by Using DBMS_LOB in PL/SQL
In the example in the slide, the LOBLOC variable serves as the LOB locator, and the AMOUNT
variable is set to the length of the text that you want to add. The SELECT FOR UPDATE
statement locks the row and returns the LOB locator for the RESUME LOB column. Finally, the
PL/SQL WRITE package procedure is called to write the text into the LOB value at the specified
offset. WRITEAPPEND appends to the existing LOB value.
The example shows how to fetch a CLOB column in releases before Oracle9i. In those releases,
it was not possible to fetch a CLOB column directly into a character column. The column value
must be bound to a LOB locator, which is accessed by the DBMS_LOB package. An example
later in this lesson shows that you can directly fetch a CLOB column by binding it to a character
variable.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 7 - 38

Copyright © 2008, Oracle. All rights reserved.

CREATE OR REPLACE PROCEDURE check_space
IS
l_fs1_bytes NUMBER;
l_fs2_bytes NUMBER; ...

BEGIN
DBMS_SPACE.SPACE_USAGE(
segment_owner => 'OE',
segment_name => 'CUSTOMER_PROFILES',
segment_type => 'TABLE',
fs1_bytes => l_fs1_bytes,
fs1_blocks => l_fs1_blocks,
fs2_bytes => l_fs2_bytes,
fs2_blocks => l_fs2_blocks, ...

);
DBMS_OUTPUT.ENABLE;
DBMS_OUTPUT.PUT_LINE(' FS1 Blocks = '||l_fs1_blocks||'

Bytes = '||l_fs1_bytes);
DBMS_OUTPUT.PUT_LINE(' FS2 Blocks = '||l_fs2_blocks||'

Bytes = '||l_fs2_bytes); …
DBMS_OUTPUT.PUT_LINE('=======================================');
DBMS_OUTPUT.PUT_LINE('Total Blocks =

'||to_char(l_fs1_blocks + l_fs2_blocks …));
END;
/

Checking the Space Usage of a LOB Table

Checking the Space Usage of a LOB Table
To check the space usage in the disk blocks allocated to the LOB segment in the
CUSTOMER_PROFILES table, use the CHECK_SPACE, as shown above. This procedure calls
the DBMS_SPACE package.
To execute the procedure, run the following command:

EXECUTE check_space

The output is as follows:
FS1 Blocks = 1 Bytes = 8192
FS2 Blocks = 0 Bytes = 0
FS3 Blocks = 1 Bytes = 8192
FS4 Blocks = 3 Bytes = 24576
Full Blocks = 0 Bytes = 0
=========================
Total Blocks = 5 ||
Total Bytes = 40960
PL/SQL procedure successfully completed.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 7 - 39

Checking Space Usage of a LOB Table (continued)
Complete Code of the CHECK_SPACE Procedure

CREATE OR REPLACE PROCEDURE check_space
IS

l_fs1_bytes NUMBER; l_fs2_bytes NUMBER;
l_fs3_bytes NUMBER; l_fs4_bytes NUMBER;
l_fs1_blocks NUMBER; l_fs2_blocks NUMBER;
l_fs3_blocks NUMBER; l_fs4_blocks NUMBER;
l_full_bytes NUMBER; l_full_blocks NUMBER;
l_unformatted_bytes NUMBER;
l_unformatted_blocks NUMBER;

BEGIN
DBMS_SPACE.SPACE_USAGE(

segment_owner => 'OE',
segment_name => 'CUSTOMER_PROFILES',
segment_type => 'TABLE',
fs1_bytes => l_fs1_bytes,
fs1_blocks => l_fs1_blocks,
fs2_bytes => l_fs2_bytes,
fs2_blocks => l_fs2_blocks,
fs3_bytes => l_fs3_bytes,
fs3_blocks => l_fs3_blocks,
fs4_bytes => l_fs4_bytes,
fs4_blocks => l_fs4_blocks,
full_bytes => l_full_bytes,
full_blocks => l_full_blocks,
unformatted_blocks => l_unformatted_blocks,
unformatted_bytes => l_unformatted_bytes

);
DBMS_OUTPUT.ENABLE;

DBMS_OUTPUT.PUT_LINE(' FS1 Blocks = '||l_fs1_blocks||'
Bytes = '||l_fs1_bytes);

DBMS_OUTPUT.PUT_LINE(' FS2 Blocks = '||l_fs2_blocks||'
Bytes = '||l_fs2_bytes);

DBMS_OUTPUT.PUT_LINE(' FS3 Blocks = '||l_fs3_blocks||'
Bytes = '||l_fs3_bytes);

DBMS_OUTPUT.PUT_LINE(' FS4 Blocks = '||l_fs4_blocks||'
Bytes = '||l_fs4_bytes);

DBMS_OUTPUT.PUT_LINE('Full Blocks = '||l_full_blocks||'
Bytes = '||l_full_bytes);

DBMS_OUTPUT.PUT_LINE('====================================
=========');

DBMS_OUTPUT.PUT_LINE('Total Blocks =
'||to_char(l_fs1_blocks + l_fs2_blocks +
l_fs3_blocks + l_fs4_blocks + l_full_blocks)|| ' ||
Total Bytes = '|| to_char(l_fs1_bytes + l_fs2_bytes
+ l_fs3_bytes + l_fs4_bytes + l_full_bytes));

END;

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 7 - 40

Copyright © 2008, Oracle. All rights reserved.

Selecting CLOB Values by Using SQL

• Query:

• Output in SQL*Plus:

• Output in SQL Developer:

SELECT id, full_name , resume -- CLOB
FROM customer_profiles
WHERE id IN (164, 150);

ID FULL_NAME RESUME
---------- ----------------- ---------------------------

164 Charlotte Kazan Date of Birth: 8 Februa
ry 1951 Resigned = 5 June 2000

150 Harry Dean Fonda Date of Birth: 1 June 1
956 Resigned = 30 September 2000

Selecting CLOB Values by Using SQL
It is possible to see the data in a CLOB column by using a SELECT statement. It is not possible
to see the data in a BLOB or BFILE column by using a SELECT statement in SQL*Plus. You
must use a tool that can display the binary information for a BLOB, as well as the relevant
software for a BFILE—for example, you can use Oracle Forms.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 7 - 41

Copyright © 2008, Oracle. All rights reserved.

Selecting CLOB Values by Using DBMS_LOB

• DBMS_LOB.SUBSTR (lob, amount, start_pos)
• DBMS_LOB.INSTR (lob, pattern)
SELECT DBMS_LOB.SUBSTR (resume, 5, 18),

DBMS_LOB.INSTR (resume,' = ')
FROM customer_profiles
WHERE id IN (150, 164);

DBMS_LOB.SUBSTR(RESUME,5,18)

DBMS_LOB.INSTR(RESUME,'=')

Febru

40
June

36

SQL*Plus

SQL Developer

Selecting CLOB Values by Using DBMS_LOB
DBMS_LOB.SUBSTR

Use DBMS_LOB.SUBSTR to display a part of a LOB. It is similar in functionality to the
SUBSTR SQL function.
DBMS_LOB.INSTR

Use DBMS_LOB.INSTR to search for information within the LOB. This function returns the
numerical position of the information.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 7 - 42

Copyright © 2008, Oracle. All rights reserved.

SET LINESIZE 50 SERVEROUTPUT ON FORMAT WORD_WRAP

DECLARE
text VARCHAR2(4001);

BEGIN
SELECT resume INTO text
FROM customer_profiles
WHERE id = 150;
DBMS_OUTPUT.PUT_LINE('text is: '|| text);
END;
/

Selecting CLOB Values in PL/SQL

anonymous block completed
text is: Date of Birth: 1 June 1956 Resigned = 30
September 2000

Selecting CLOB Values in PL/SQL
The slide shows the code for accessing CLOB values that can be implicitly converted to
VARCHAR2. When selected, the RESUME column value is implicitly converted from a CLOB to
a VARCHAR2 to be stored in the TEXT variable.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 7 - 43

Copyright © 2008, Oracle. All rights reserved.

Removing LOBs

• Delete a row containing LOBs:

• Disassociate a LOB value from a row:

DELETE
FROM customer_profiles
WHERE id = 164;

UPDATE customer_profiles
SET resume = EMPTY_CLOB()
WHERE id = 150;

Removing LOBs
A LOB instance can be deleted (destroyed) by using the appropriate SQL DML statements. The
SQL statement DELETE deletes a row and its associated internal LOB value. To preserve the
row and destroy only the reference to the LOB, you must update the row by replacing the LOB
column value with NULL or an empty string, or by using the EMPTY_B/CLOB() function.
Note: Replacing a column value with NULL and using EMPTY_B/CLOB are not the same. Using
NULL sets the value to null; using EMPTY_B/CLOB ensures that nothing is in the column.
A LOB is destroyed when the row containing the LOB column is deleted, when the table is
dropped or truncated, or when all LOB data is updated.
You must explicitly remove the file associated with a BFILE by using the OS commands.
To erase part of an internal LOB, you can use DBMS_LOB.ERASE.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 7 - 44

Copyright © 2008, Oracle. All rights reserved.

Lesson Agenda

• Introduction to LOBs
• Managing BFILEs by using the DBMS_LOB package
• Migrating LONG data types to LOBs
• Manipulating LOB data
• Using temporary LOBs

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 7 - 45

Copyright © 2008, Oracle. All rights reserved.

Temporary LOBs

• Temporary LOBs:
– Provide an interface to support creation of LOBs that act like

local variables
– Can be BLOBs, CLOBs, or NCLOBs
– Are not associated with a specific table
– Are created by using the DBMS_LOB.CREATETEMPORARY

procedure
– Use DBMS_LOB routines

• The lifetime of a temporary LOB is a session.
• Temporary LOBs are useful for transforming data in

permanent internal LOBs.

Temporary LOBs
Temporary LOBs provide an interface to support the creation and deletion of LOBs that act like
local variables. Temporary LOBs can be BLOBs, CLOBs, or NCLOBs.
The following are the features of temporary LOBs:

• Data is stored in your temporary tablespace, not in tables.
• Temporary LOBs are faster than persistent LOBs, because they do not generate redo or

rollback information.
• Temporary LOBs lookup is localized to each user’s own session. Only the user who creates

a temporary LOB can access it, and all temporary LOBs are deleted at the end of the session
in which they were created.

• You can create a temporary LOB by using DBMS_LOB.CREATETEMPORARY.
Temporary LOBs are useful when you want to perform a transformational operation on a LOB
(for example, changing an image type from GIF to JPEG). A temporary LOB is empty when
created and does not support the EMPTY_B/CLOB functions.
Use the DBMS_LOB package to use and manipulate temporary LOBs.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 7 - 46

Copyright © 2008, Oracle. All rights reserved.

Creating a Temporary LOB

The PL/SQL procedure to create and test a temporary LOB:

CREATE OR REPLACE PROCEDURE is_templob_open(
p_lob IN OUT BLOB, p_retval OUT INTEGER) IS

BEGIN
-- create a temporary LOB
DBMS_LOB.CREATETEMPORARY (p_lob, TRUE);
-- see if the LOB is open: returns 1 if open
p_retval := DBMS_LOB.ISOPEN (p_lob);
DBMS_OUTPUT.PUT_LINE (
'The file returned a value...' || p_retval);

-- free the temporary LOB
DBMS_LOB.FREETEMPORARY (p_lob);

END;
/

Creating a Temporary LOB
The example in the slide shows a user-defined PL/SQL procedure, is_templob_open, which
creates a temporary LOB. This procedure accepts a LOB locator as input, creates a temporary
LOB, opens it, and tests whether the LOB is open.
The is_templob_open procedure uses the procedures and functions from the DBMS_LOB
package as follows:

• The CREATETEMPORARY procedure is used to create the temporary LOB.
• The ISOPEN function is used to test whether a LOB is open: This function returns the value
1 if the LOB is open.

• The FREETEMPORARY procedure is used to free the temporary LOB. Memory increases
incrementally as the number of temporary LOBs grows, and you can reuse the temporary
LOB space in your session by explicitly freeing temporary LOBs.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 7 - 47

Copyright © 2008, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Identify four built-in types for large objects: BLOB, CLOB,
NCLOB, and BFILE

• Describe how LOBs replace LONG and LONG RAW
• Describe two storage options for LOBs:

– Oracle server (internal LOBs)
– External host files (external LOBs)

• Use the DBMS_LOB PL/SQL package to provide routines for
LOB management

• Use temporary LOBs in a session

Summary
There are four LOB data types:

• A BLOB is a binary large object.
• A CLOB is a character large object.
• An NCLOB stores multiple-byte national character set data.
• A BFILE is a large object stored in a binary file outside the database.

LOBs can be stored internally (in the database) or externally (in an OS file). You can manage
LOBs by using the DBMS_LOB package and its procedure.
Temporary LOBs provide an interface to support the creation and deletion of LOBs that act like
local variables.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 7 - 48

Copyright © 2008, Oracle. All rights reserved.

Practice 7: Overview

This practice covers the following topics:
• Creating object types by using the CLOB and BLOB data

types
• Creating a table with the LOB data types as columns
• Using the DBMS_LOB package to populate and interact with

the LOB data

Practice 7: Overview
In this practice, you create a table with both BLOB and CLOB columns. Then, you use the
DBMS_LOB package to populate the table and manipulate the data.
Use the OE schema for this practice.
For detailed instructions about performing this practice, see Appendix A, “Practice Solutions.”

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 7 - 49

Practice 7
In this practice, you create a table with both BLOB and CLOB columns. Then, you use the
DBMS_LOB package to populate the table and manipulate the data.
Working with LOBs

1. Create a table called PERSONNEL by executing the
D:\Labs\labs\lab_07_01.sql script file. The table contains the following
attributes and data types:

2. Insert two rows into the PERSONNEL table, one each for employee 2034 (whose last
name is Allen) and employee 2035 (whose last name is Bond). Use the empty function
for the CLOB, and provide NULL as the value for the BLOB.

3. Examine and execute the D:\labs\labs\lab_07_03.sql script. The script creates
a table named REVIEW_TABLE. This table contains the annual review information for
each employee. The script also contains two statements to insert review details about two
employees.

4. Update the PERSONNEL table.
a. Populate the CLOB for the first row by using this subquery in an UPDATE statement:

SELECT ann_review
FROM review_table

WHERE employee_id = 2034;
b. Populate the CLOB for the second row by using PL/SQL and the DBMS_LOB package.

Use the following SELECT statement to provide a value for the LOB locator.
SELECT ann_review

FROM review_table

WHERE employee_id = 2035;

5. Create a procedure that adds a locator to a binary file into the PICTURE column of the
PRODUCT_INFORMATION table. The binary file is a picture of the product. The image
files are named after the product IDs. You must load an image file locator into all rows in
the Printers category (CATEGORY_ID = 12) in the PRODUCT_INFORMATION table.
a. Create a DIRECTORY object called PRODUCT_PIC that references the location of

the binary. These files are available in the
D:\Labs\DATA_FILES\PRODUCT_PIC folder.
CREATE DIRECTORY product_pic AS
'D:\Labs\DATA_FILES\PRODUCT_PIC';

(Alternatively, use the D:\labs\labs\lab_07_05a.sql script.)

b. Add the image column to the PRODUCT_INFORMATION table by using:
ALTER TABLE product_information ADD (picture BFILE);

(Alternatively, use the D:\labs\labs\lab_07_05_b.sql file.)

Column Name Data Type Length
ID NUMBER 6

last_name VARCHAR2 35
review CLOB N/A
picture BLOB N/A

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Practice 7 (continued)
c. Create a PL/SQL procedure called load_product_image that uses

DBMS_LOB.FILEEXISTS to test whether the product picture file exists. If the file
exists, set the BFILE locator for the file in the PICTURE column; otherwise, display
a message that the file does not exist. Use the DBMS_OUTPUT package to report file
size information about each image associated with the PICTURE column.
(Alternatively, use the D:\labs\labs\lab_07_05_c.sql file.)

d. Invoke the procedure by passing the name of the PRODUCT_PIC directory object as a
string literal parameter value.

e. Check the LOB space usage of the PRODUCT_INFORMATION table. Use the
D:\labs\labs\lab_07_05_e.sql file to create the procedure and execute it.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Copyright © 2008, Oracle. All rights reserved.

Administering SecureFile LOBs

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 8 - 2

Copyright © 2008, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to:
• Describe SecureFile LOB features
• Enable SecureFile LOB deduplication, compression, and

encryption
• Migrate BasicFile LOBs to the SecureFile LOB format
• Analyze the performance of LOBs

Objectives
In this lesson, you learn to migrate the pre-Oracle Database 11g LOB storage format (called
BasicFile LOB format) to the SecureFile LOB format. You also compare the performance of
LOBs stored in the BasicFile format with the SecureFile format. Finally, you learn how to enable
SecureFile LOB deduplication (storage sharing), compression, and encryption.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 8 - 3

Copyright © 2008, Oracle. All rights reserved.

Lesson Agenda

• SecureFile LOB features
• Deduplication, compression, and encryption
• Migration of BasicFile LOBs to the SecureFile LOB format
• Performance of LOBs

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 8 - 4

Copyright © 2008, Oracle. All rights reserved.

SecureFile LOBs

Oracle Database 11g offers a reengineered large object (LOB)
data type that:
• Improves performance
• Eases manageability
• Simplifies application development
• Offers advanced, next-generation functionality such as

intelligent compression and transparent encryption

SecureFile LOBs
With SecureFile LOBs, the LOB data type is completely reengineered with dramatically
improved performance, manageability, and ease of application development. This
implementation, available with Oracle Database 11g, also offers advanced, next-generation
functionality such as intelligent compression and transparent encryption. This feature
significantly strengthens the native content management capabilities of Oracle Database.
SecureFile LOBs were introduced to supplement the implementation of original BasicFile LOBs
that are identified by the BASICFILE SQL parameter.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 8 - 5

Copyright © 2008, Oracle. All rights reserved.

Storage of SecureFile LOBs

Oracle Database 11g implements a new storage paradigm for
LOB storage:
• If the SECUREFILE storage keyword appears in the CREATE
TABLE statement, the new storage is used.

• If the BASICFILE storage keyword appears in the CREATE
TABLE statement, the old storage paradigm is used.

• By default, the storage is BASICFILE, unless you modify the
setting for the DB_SECUREFILE parameter in the init.ora
file.

Storage of SecureFile LOBs
Starting with Oracle Database 11g, you have the option of using the new SecureFile storage
paradigm for LOBs. You can specify to use the new paradigm by using the SECUREFILE
keyword in the CREATE TABLE statement. If that keyword is left out, the old storage paradigm
for basic file LOBs is used. This is the default behavior.
You can modify the init.ora file and change the default behavior for the storage of LOBs by
setting the DB_SECUREFILE initialization parameter. The values allowed are:
• ALWAYS: Attempts to create all LOB files as SECUREFILES but creates any LOBs not in
ASSM tablespaces as BASICFILE LOBs

• FORCE: All LOBs created in the system are created as SECUREFILE LOBs.
• PERMITTED: The default; allows SECUREFILES to be created when specified with the
SECUREFILE keyword in the CREATE TABLE statement

• NEVER: Creates LOBs that are specified as SECUREFILE LOBs as BASICFILE LOBs
• IGNORE: Ignores the SECUREFILE keyword and all SECUREFILE options

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 8 - 6

Copyright © 2008, Oracle. All rights reserved.

Creating a SecureFile LOB

• Create a tablespace for the LOB data:

• Create a table to hold the LOB data:
CONNECT oe
CREATE TABLE customer_profiles_sf
(id NUMBER,
first_name VARCHAR2 (40),
last_name VARCHAR2 (80),
profile_info BLOB)
LOB(profile_info) STORE AS SECUREFILE
(TABLESPACE sf_tbs1);

-- have your dba do this:
CREATE TABLESPACE sf_tbs1
DATAFILE 'sf_tbs1.dbf' SIZE 1500M REUSE
AUTOEXTEND ON NEXT 200M
MAXSIZE 3000M
SEGMENT SPACE MANAGEMENT AUTO;

1

2

Creating a SecureFile LOB
To create a column to hold a LOB that is a SecureFile, you:

• Create a tablespace to hold the data
• Define a table that contains a LOB column data type that is used to store the data in the

SecureFile format
In the example shown in the slide:

1. The sf_tbs1 tablespace is defined. This tablespace stores the LOB data in the SecureFile
format. When you define a column to hold SecureFile data, you must have Automatic
Segment Space Management (ASSM) enabled for the tablespace in order to support
SecureFiles.

2. The CUSTOMER_PROFILES_SF table is created. The PROFILE_INFO column holds
the LOB data in the SecureFile format, because the storage clause identifies the format.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 8 - 7

Copyright © 2008, Oracle. All rights reserved.

Writing Data to the SecureFile LOB

Writing data to a SECUREFILE LOB works in the same way as
writing data to a BASICFILE LOB.
• Create the DIRECTORY object in the database that points to

the location where the external documents are stored.
• Create a procedure to read the LOB data into the LOB

column.
• Create a procedure to insert LOB data into the table (which

references the procedure that reads the LOB data).
• Execute the insert procedure and specify the file that you

want to insert.

Writing Data to the SecureFile LOB
In the previous lesson, you learned how to write data to a LOB. The same procedure is used
when writing data to a SecureFile LOB.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 8 - 8

Copyright © 2008, Oracle. All rights reserved.

Reading Data from the Table

Reading data from a SECUREFILE LOB works in the same way
as reading data from a BASICFILE LOB.
• Create a procedure to specify the LOB data that you want to

read from the table.
• Execute the procedure to read the table.

Reading Data From a SecureFile LOB
In the previous lesson, you learned how to read data from a LOB. The same procedure is used
when reading data from a SecureFile LOB.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 8 - 9

Copyright © 2008, Oracle. All rights reserved.

Lesson Agenda

• SecureFile LOB features
• Deduplication, compression, and encryption
• Migration of BasicFile LOBs to the SecureFile LOB format
• Performance of LOBs

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 8 - 10

Copyright © 2008, Oracle. All rights reserved.

Enabling Deduplication and Compression

To enable deduplication and compression, use the ALTER
TABLE statement with the DEDUPLICATE and COMPRESS
options.
• By enabling deduplication with SecureFiles, duplicate LOB

data is automatically detected and space is conserved by
storing only one copy.

• Enabling compression turns on LOB compression.

ALTER TABLE tblname
MODIFY LOB lobcolname
(DEDUPLICATE option
COMPRESS option)

Enabling Deduplication and Compression with the ALTER TABLE Statement
You can enable deduplication and compression of SecureFiles with the ALTER TABLE
statement and the DEDUPLICATE and COMPRESS options.
The DEDUPLICATE option enables you to specify that LOB data, which is identical in two or
more rows in a LOB column, should share the same data blocks. The opposite of this option is
KEEP_DUPLICATES. Using a secure hash index to detect duplication, the database combines
LOBs with identical content into a single copy, thereby reducing storage and simplifying storage
management. You can also use DBMS_LOB.SETOPTIONS to enable or disable deduplication
on individual LOBs.
The options for the COMPRESS clause are:
• COMPRESS HIGH: Provides the best compression but incurs the most work
• COMPRESS MEDIUM: Is the default value
• NOCOMPRESS: Disables compression

You can also use DBMS_LOB.SETOPTIONS to enable or disable compression on individual
LOBs.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 8 - 11

Copyright © 2008, Oracle. All rights reserved.

Enabling Deduplication and
Compression: Example

1. Check the space being used by the
CUSTOMER_PROFILES_SF table.

2. Enable deduplication and compression on the
PROFILE_INFO LOB column with the ALTER TABLE
statement.

3. Recheck the space being used by the
CUSTOMER_PROFILES_SF table.

4. Reclaim the space.

Deduplication and Compression: Example
To demonstrate how efficient deduplication and compression are on SecureFiles, the example
follows the set of steps outlined in the slide.
In the first step, you see the space being used by the CUSTOMER_PROFILES_SF table.
In the second step, you enable deduplication and compression for the PROFILE_INFO LOB
column in the CUSTOMER_PROFILES_SF table.
In the third step, you examine the space being used after deduplication and compression are
enabled.
In the fourth step, you reclaim the space and examine the results.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 8 - 12

Copyright © 2008, Oracle. All rights reserved.

CREATE OR REPLACE PROCEDURE check_sf_space
IS
l_fs1_bytes NUMBER;
l_fs2_bytes NUMBER;
...

BEGIN
DBMS_SPACE.SPACE_USAGE(
segment_owner => 'OE',
segment_name => 'CUSTOMER_PROFILES_SF',
segment_type => 'TABLE',
fs1_bytes => l_fs1_bytes,
fs1_blocks => l_fs1_blocks,
fs2_bytes => l_fs2_bytes,
fs2_blocks => l_fs2_blocks, …

);
DBMS_OUTPUT.ENABLE;
DBMS_OUTPUT.PUT_LINE(' FS1 Blocks = '||l_fs1_blocks||'

Bytes = '||l_fs1_bytes);
DBMS_OUTPUT.PUT_LINE(' FS2 Blocks = '||l_fs2_blocks||'

Bytes = '||l_fs2_bytes); …
DBMS_OUTPUT.PUT_LINE('=======================================');
DBMS_OUTPUT.PUT_LINE('Total Blocks =

'||to_char(l_fs1_blocks + l_fs2_blocks));
...
END;

Step 1: Checking Space Usage

Checking Space Usage Before Deduplication and Compression
In the previous lesson, you checked the space usage of a BASICFILE LOB. Here, you create
another procedure to check the SECUREFILE LOB space usage.
To execute the procedure, run the following command:

EXECUTE check_sf_space

Note: The full code for the CHECK_SF_SPACE procedure is shown on the next page.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 8 - 13

Checking Space Usage Before Deduplication and Compression (continued)
CREATE OR REPLACE PROCEDURE check_sf_space
IS

l_fs1_bytes NUMBER; l_fs2_bytes NUMBER;
l_fs3_bytes NUMBER; l_fs4_bytes NUMBER;
l_fs1_blocks NUMBER; l_fs2_blocks NUMBER;
l_fs3_blocks NUMBER; l_fs4_blocks NUMBER;
l_full_bytes NUMBER; l_full_blocks NUMBER;
l_unformatted_bytes NUMBER;
l_unformatted_blocks NUMBER;

BEGIN
DBMS_SPACE.SPACE_USAGE(

segment_owner => 'OE',
segment_name => 'CUSTOMER_PROFILES_SF',
segment_type => 'TABLE',
fs1_bytes => l_fs1_bytes,
fs1_blocks => l_fs1_blocks,
fs2_bytes => l_fs2_bytes,
fs2_blocks => l_fs2_blocks,
fs3_bytes => l_fs3_bytes,
fs3_blocks => l_fs3_blocks,
fs4_bytes => l_fs4_bytes,
fs4_blocks => l_fs4_blocks,
full_bytes => l_full_bytes,
full_blocks => l_full_blocks,
unformatted_blocks => l_unformatted_blocks,
unformatted_bytes => l_unformatted_bytes

);
DBMS_OUTPUT.ENABLE;

DBMS_OUTPUT.PUT_LINE(' FS1 Blocks = '||l_fs1_blocks||'
Bytes = '||l_fs1_bytes);

DBMS_OUTPUT.PUT_LINE(' FS2 Blocks = '||l_fs2_blocks||'
Bytes = '||l_fs2_bytes);

DBMS_OUTPUT.PUT_LINE(' FS3 Blocks = '||l_fs3_blocks||'
Bytes = '||l_fs3_bytes);

DBMS_OUTPUT.PUT_LINE(' FS4 Blocks = '||l_fs4_blocks||'
Bytes = '||l_fs4_bytes);

DBMS_OUTPUT.PUT_LINE('Full Blocks = '||l_full_blocks||'
Bytes = '||l_full_bytes);

DBMS_OUTPUT.PUT_LINE('===============================
==============');
DBMS_OUTPUT.PUT_LINE('Total Blocks =

'||to_char(l_fs1_blocks + l_fs2_blocks +
l_fs3_blocks + l_fs4_blocks + l_full_blocks)|| ' ||
Total Bytes = '|| to_char(l_fs1_bytes + l_fs2_bytes
+ l_fs3_bytes + l_fs4_bytes + l_full_bytes));

END check_sf_space;

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 8 - 14

Copyright © 2008, Oracle. All rights reserved.

Step 1: Checking Space Usage

Execution Results:

EXECUTE check_sf_space

FS1 Blocks = 0 Bytes = 0
FS2 Blocks = 1 Bytes = 8192
FS3 Blocks = 0 Bytes = 0
FS4 Blocks = 4 Bytes = 32768
Full Blocks = 0 Bytes = 0
================================
Total Blocks = 5 ||
Total Bytes = 40960

PL/SQL procedure successfully completed.

Checking Space Usage Before Deduplication and Compression (continued)
You are shown the space usage before enabling deduplication and compression. The amount
shown in the slide is used as a baseline for comparison over the next few steps.
Note: You can also compare the space usage with that of the BASICFILE LOB from the
previous lesson.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 8 - 15

Copyright © 2008, Oracle. All rights reserved.

Enabling Deduplication and
Compression: Example

Step 2: Enabling deduplication and compression:

ALTER TABLE customer_profiles_sf
MODIFY LOB (profile_info)
(DEDUPLICATE LOB
COMPRESS HIGH);

Table altered.

Enabling Deduplication and Compression: Example
To enable deduplication and compression, run the ALTER TABLE statement with the
appropriate options.
In this example, deduplication is turned on and the compression rate is set to HIGH.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 8 - 16

Copyright © 2008, Oracle. All rights reserved.

Enabling Deduplication and
Compression: Example

Step 3: Rechecking LOB space usage:
EXECUTE check_sf_space

FS1 Blocks = 0 Bytes = 0
FS2 Blocks = 0 Bytes = 0
FS3 Blocks = 0 Bytes = 0
FS4 Blocks = 4 Bytes = 32768
Full Blocks = 1 Bytes = 8192
================================
Total Blocks = 5 ||
Total Bytes = 40960

PL/SQL procedure successfully completed.

Rechecking LOB Space Usage
The amount of space used should be about 65% less than before deduplication and compression
were enabled.
If the total space used appears to be the same as before deduplication and compression were
enabled, you need to reclaim the free space before it is usable again.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 8 - 17

Copyright © 2008, Oracle. All rights reserved.

Enabling Deduplication and
Compression: Example

Step 4: Reclaiming the free space:

ALTER TABLE customer_profiles_sf ENABLE ROW MOVEMENT;
Table altered.

ALTER TABLE customer_profiles_sf SHRINK SPACE COMPACT;
Table altered.

ALTER TABLE customer_profiles_sf SHRINK SPACE;
Table altered.

1

2

3

Reclaiming the Free Space
1. The first statement enables row movement so that the data can be shifted to save space.

Compacting the segment requires row movement.
2. The second statement (ALTER TABLE resumes SHRINK SPACE COMPACT) redistributes

the rows inside the blocks resulting in more free blocks under the High Water Mark
(HWM)—but the HWM itself is not disturbed.

3. The third statement (ALTER TABLE resumes SHRINK SPACE) returns unused blocks to
the database and resets the HWM, moving it to a lower position. Lowering the HWM
should result in better full-table scan reads.

Rechecking LOB Space Usage
EXECUTE check_sf_space
FS1 Blocks = 0 Bytes = 0
FS2 Blocks = 1 Bytes = 8192
FS3 Blocks = 0 Bytes = 0
FS4 Blocks = 0 Bytes = 0
Full Blocks = 0 Bytes = 0
================================
Total Blocks = 1 ||
Total Bytes = 8192

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 8 - 18

Copyright © 2008, Oracle. All rights reserved.

Using Encryption

The encryption option enables you to turn the LOB encryption
on or off, and optionally select an encryption algorithm.
• Encryption is performed at the block level.
• You can specify the encryption algorithm:

– 3DES168
– AES128
– AES192 (default)
– AES256

• The column encryption key is derived by using Transparent
Data Encryption.

• All LOBs in the LOB column are encrypted.
• DECRYPT keeps the LOBs in cleartext.
• LOBs can be encrypted on a per-column or per-partition

basis.

Using Encryption
You can create a table or alter a table with encryption enabled or disabled on a LOB column. The
current Transparent Data Encryption (TDE) syntax is used for extending encryption to LOB data
types.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 8 - 19

Copyright © 2008, Oracle. All rights reserved.

Using Encryption

1. Create a directory to store the Transparent Data Encryption
(TDE) wallet.

2. Edit the <ORACLE_HOME>\network\admin\sqlnet.ora file
to indicate the location of the TDE wallet.

3. Stop and start the listener for the change to take effect.

4. To open the wallet, log in to SQL*Plus as SYSDBA and
execute the following command:

mkdir d:\etc\oracle\wallets

ENCRYPTION_WALLET_LOCATION=(SOURCE=(METHOD=FILE)
(METHOD_DATA= (DIRECTORY=d:\etc\oracle\wallets)))

ALTER system SET KEY IDENTIFIED BY "welcome1";

LSNRCTL RELOAD

Using Encryption (continued)
TDE enables you to encrypt sensitive data in database columns as it is stored in the operating
system files.
TDE is a key-based access control system that enforces authorization by encrypting data with a
key that is kept secret. There can be only one key for each database table that contains encrypted
columns, regardless of the number of encrypted columns in a given table. Each table’s column
encryption key is, in turn, encrypted with the database server’s master key. No keys are stored in
the database. Instead, they are stored in an Oracle wallet, which is part of the external security
module.
To enable TDE, perform the following:

1. Create a directory to store the TDE wallet.
2. Modify the sqlnet.ora file to identify the location of the TDE wallet, as shown in the

slide. Make sure that the wallet location is set to a location outside the Oracle installation to
avoid ending up on a backup tape together with encrypted data.

3. Stop and start the listener to have the change take effect: LSNRCTL RELOAD
4. Open the wallet. Log in to SQL*Plus as the SYS user and execute the following command:

ALTER system SET KEY IDENTIFIED BY “welcome”;

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 8 - 20

Copyright © 2008, Oracle. All rights reserved.

Using Encryption: Example

• Enable encryption:

• Verify that the LOB is encrypted:

ALTER TABLE customer_profiles_sf
MODIFY (profile_info ENCRYPT USING 'AES192');

Table altered.

SELECT *
FROM user_encrypted_columns;

TABLE_NAME COLUMN_NAME ENCRYPTION_ALG SAL
----------------- ----------------- ---------------- ---
CUSTOMER_PROFILES PROFILE_INFO AES 192 bits key YES

Using Encryption: Example
In the example shown in the slide, the CUSTOMER_PROFILES_SF table is modified so that the
PROFILE_INFO column uses encryption.
You can query the USER_ENCRYPTED_COLUMNS dictionary view to see the status of the
encrypted columns.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 8 - 21

Copyright © 2008, Oracle. All rights reserved.

Lesson Agenda

• SecureFile LOB features
• Deduplication, compression, and encryption
• Migration of BasicFile LOBs to the SecureFile LOB format
• Performance of LOBs

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 8 - 22

Copyright © 2008, Oracle. All rights reserved.

Migrating from BasicFile to SecureFile Format

Check the LOB segment subtype name for the BasicFile format:

col segment_name format a30
col segment_type format a13

SELECT segment_name, segment_type, segment_subtype
FROM dba_segments
WHERE tablespace_name = 'LOB_TBS1'
AND segment_type = 'LOBSEGMENT';

SEGMENT_NAME SEGMENT_TYPE SEGME
------------------------------ ------------------ -----
SYS_LOB0000080068C00004$$ LOBSEGMENT ASSM

LOB Segment Type for BasicFile Format
By querying the DBA_SEGMENTS view, you can see that the LOB segment subtype name for
BasicFile LOB storage is ASSM.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 8 - 23

Copyright © 2008, Oracle. All rights reserved.

Migrating from BasicFile to SecureFile Format

• The migration from BasicFile to SecureFiles LOB storage
format is performed online.

• This means that the CUSTOMER_PROFILES table continues
to be accessible during the migration.

• This type of operation is called online redefinition.

connect oe
CREATE TABLE customer_profiles_interim
(id NUMBER,
full_name VARCHAR2 (45),
resume CLOB,
picture BLOB)
LOB(picture) STORE AS SECUREFILE
(TABLESPACE lob_tbs1);

Creating an Interim Table
Online redefinition requires an interim table for data storage.
In this step, the interim table is defined with the SecureFiles LOB storage format, and the LOB is
stored in the lob_tbs1 tablespace. After the migration is completed, the PICTURE LOB is
stored in the lob_tbs1 tablespace.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 8 - 24

Copyright © 2008, Oracle. All rights reserved.

Migrating from BasicFile to SecureFile Format

Call the DBMS_REDEFINITION package to perform the online
redefinition operation:
connect /as sysdba
DECLARE
error_count PLS_INTEGER := 0;

BEGIN
DBMS_REDEFINITION.START_REDEF_TABLE
('OE', 'customer_profiles', 'customer_profiles_interim',
'id id, full_name full_name,
resume resume, picture picture',
OPTIONS_FLAG => DBMS_REDEFINITION.CONS_USE_ROWID);

DBMS_REDEFINITION.COPY_TABLE_DEPENDENTS
('OE', 'customer_profiles', 'customer_profiles_interim',

1, true,true,true,false, error_count);
DBMS_OUTPUT.PUT_LINE('Errors := ' || TO_CHAR(error_count));
DBMS_REDEFINITION.FINISH_REDEF_TABLE
('OE', 'customer_profiles', 'customer_profiles_interim');

END;

Using DBMS_REDEFINITION to Perform Redefinition
After running the code shown in the slide and completing the redefinition operation, you can
drop the interim table:

connect oe

DROP TABLE customer_profiles_interim;

Now, check the segment type of the migrated LOB. Note that the segment subtype for SecureFile
LOB storage is SECUREFILE; for BasicFile format, it is ASSM.

SELECT segment_name, segment_type, segment_subtype
FROM dba_segments
WHERE tablespace_name = 'LOB_TBS1'
AND segment_type = 'LOBSEGMENT'
/

SEGMENT_NAME SEGMENT_TYPE SEGMENT_SU
------------------------------ ------------------ ----------
SYS_LOB0000080071C00004$$ LOBSEGMENT SECUREFILE

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 8 - 25

Copyright © 2008, Oracle. All rights reserved.

Lesson Agenda

• SecureFile LOB features
• Deduplication, compression, and encryption
• Migration of BasicFile LOBs to the SecureFile LOB format
• Performance of LOBs

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 8 - 26

Copyright © 2008, Oracle. All rights reserved.

Comparing Performance

Compare the performance on loading and reading LOB columns
in the SecureFile and BasicFile formats:

BasicFile format

SecureFile format

Performance
Comparison

00:00:01.0900:00:00.96

00:00:01.15

Reading Data

00:00:01.68

Loading Data

Performance
In the examples shown in this lesson and the previous lesson, the performance on loading and
reading data in the LOB column of the SecureFile format LOB is faster than that of the BasicFile
format LOB.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 8 - 27

Copyright © 2008, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Describe SecureFile LOB features
• Enable SecureFile LOB deduplication, compression, and

encryption
• Migrate BasicFile LOBs to the SecureFile LOB format
• Analyze the performance of LOBs

Summary
In this lesson, you learned about the new SecureFile format for LOBs. You learned that the
SecureFile format offers features such as deduplication, compression, and encryption. You
learned how to migrate the older version BasicFile format to the SecureFile format, and also
learned that the performance of SecureFile format LOBs is faster than the BasicFile format
LOBs.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 8 - 28

Copyright © 2008, Oracle. All rights reserved.

Practice 8 Overview:
Using SecureFile Format LOBs

This practice covers the following topics:
• Setting up the environment for LOBs
• Migrating BasicFile LOBs to SecureFile LOBs
• Enabling deduplication and compression

Practice 8 Overview: Using SecureFile Format LOBs
In this lesson, you practice using the features of SecureFile format LOBs.
Use the OE schema for this practice.
For detailed instructions about performing this practice, see Appendix A, “Practice Solutions.”

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 8 - 29

Practice 8
In this lesson, you practice using the features of SecureFile format LOBs.
Working with SecureFile LOBs

1. In this practice, you migrate a BasicFile format LOB to a SecureFile format LOB. You need
to set up several supporting structures:

a. As the OE user, drop your existing PRODUCT_DESCRIPTIONS table and create a
new one:

DROP TABLE product_descriptions;

CREATE TABLE product_descriptions
(product_id NUMBER);

b. As the SYS user, create a new tablespace to store the LOB information.
CREATE TABLESPACE lob_tbs2

DATAFILE 'lob_tbs2.dbf' SIZE 1500M REUSE
AUTOEXTEND ON NEXT 200M
MAXSIZE 3000M
SEGMENT SPACE MANAGEMENT AUTO;

c. Create a directory object that identifies the location of your LOBs. In the Oracle
classroom, the location is in the Oracle D:\labs\DATA_FILES\PRODUCT_PIC
folder. Then, grant read privileges on the directory to the OE user.

CREATE OR REPLACE DIRECTORY product_files
AS 'd:\Labs\DATA_FILES\PRODUCT_PIC ';

GRANT READ ON DIRECTORY product_files TO oe;

d. As the OE user, alter the table and add a BLOB column of the BASICFILE storage
type.

ALTER TABLE product_descriptions ADD
(detailed_product_info BLOB)
LOB (detailed_product_info) STORE AS BASICFILE
(tablespace lob_tbs2);

e. Create the procedure to load the LOB data into the column (You can run the
D:\Labs\labs\lab_08_01_e.sql script.):

CREATE OR REPLACE PROCEDURE loadLOBFromBFILE_proc (
p_dest_loc IN OUT BLOB, p_file_name IN VARCHAR2)

IS
v_src_loc BFILE := BFILENAME('PRODUCT_FILES', p_file_name);
v_amount INTEGER := 4000;

BEGIN
DBMS_LOB.OPEN(v_src_loc, DBMS_LOB.LOB_READONLY);
v_amount := DBMS_LOB.GETLENGTH(v_src_loc);
DBMS_LOB.LOADFROMFILE(p_dest_loc, v_src_loc, v_amount);
DBMS_LOB.CLOSE(v_src_loc);

END loadLOBFromBFILE_proc;
/

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 8 - 30

Practice 8 (continued)
f. As the OE user, create the procedure to write the LOB data. (You can run the

D:\Labs\lab\lab_08_01_f.sql script.)
CREATE OR REPLACE PROCEDURE write_lob (p_file IN

VARCHAR2)
IS

i NUMBER; v_id NUMBER; v_b BLOB;
BEGIN

DBMS_OUTPUT.ENABLE;
DBMS_OUTPUT.PUT_LINE('Begin inserting rows...');
FOR i IN 1 .. 5 LOOP

v_id:=SUBSTR(p_file, 1, 4);
INSERT INTO product_descriptions

VALUES (v_id, EMPTY_BLOB())
RETURNING detailed_product_info INTO v_b;

loadLOBFromBFILE_proc(v_b,p_file);
DBMS_OUTPUT.PUT_LINE('Row '|| i ||' inserted.');

END LOOP;
COMMIT;

END write_lob;
/

g. As the OE user, execute the procedures to load the data. If you are using SQL*Plus,
you can set the timing on to observe the time. (You can run the
D:\Labs\lab\lab_08_01_g.sql script.)
Note: If you are using SQL Developer, issue only the EXECUTE statements listed as
follows. In SQL Developer, some of the SQL*Plus commands are ignored. It is
recommended that you use SQL*Plus for this exercise.

set serveroutput on
set verify on
set term on
set lines 200

timing start load_data
execute write_lob('1726_LCD.doc');
execute write_lob('1734_RS232.doc');
execute write_lob('1739_SDRAM.doc');
timing stop

h. As the SYSTEM user, check the segment type in the data dictionary.
SELECT segment_name, segment_type, segment_subtype
FROM dba_segments
WHERE tablespace_name = 'LOB_TBS2'
AND segment_type = 'LOBSEGMENT';

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 8 - 31

Practice 8 (continued)
i. As the OE user, create an interim table.

CREATE TABLE product_descriptions_interim
(product_id NUMBER,
detailed_product_info BLOB)
LOB(detailed_product_info) STORE AS SECUREFILE
(TABLESPACE lob_tbs2);

j. Connect as the SYSTEM user and run the redefinition script. (You can run the
D:\Labs\lab\lab_08_01_j.sql script.)

DECLARE
error_count PLS_INTEGER := 0;
BEGIN

DBMS_REDEFINITION.START_REDEF_TABLE
('OE', 'product_descriptions',

'product_descriptions_interim',
'product_id product_id, detailed_product_info

detailed_product_info',
OPTIONS_FLAG => DBMS_REDEFINITION.CONS_USE_ROWID);

DBMS_REDEFINITION.COPY_TABLE_DEPENDENTS
('OE', 'product_descriptions',

'product_descriptions_interim',
1, true,true,true,false, error_count);

DBMS_OUTPUT.PUT_LINE('Errors := ' ||
TO_CHAR(error_count));
DBMS_REDEFINITION.FINISH_REDEF_TABLE

('OE', 'product_descriptions',
'product_descriptions_interim');

END;
/

k. As the OE user, remove the interim table.
DROP TABLE product_descriptions_interim;

l. As the SYSTEM user, check the segment type in the data dictionary to make sure it
is now set to SECUREFILE.

SELECT segment_name, segment_type, segment_subtype
FROM dba_segments
WHERE tablespace_name = 'LOB_TBS2'
AND segment_type = 'LOBSEGMENT';

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 8 - 32

Practice 8 (continued)
m. As the OE user, check the space of the table by executing the CHECK_SPACE

procedure. (You can run the D:\Labs\labs\lab_08_01_m.sql script.)
CREATE OR REPLACE PROCEDURE check_space
IS
l_fs1_bytes NUMBER;
l_fs2_bytes NUMBER;
l_fs3_bytes NUMBER;
l_fs4_bytes NUMBER;
l_fs1_blocks NUMBER;
l_fs2_blocks NUMBER;
l_fs3_blocks NUMBER;
l_fs4_blocks NUMBER;
l_full_bytes NUMBER;
l_full_blocks NUMBER;
l_unformatted_bytes NUMBER;
l_unformatted_blocks NUMBER;

BEGIN
DBMS_SPACE.SPACE_USAGE(
segment_owner => 'OE',
segment_name => 'PRODUCT_DESCRIPTIONS',
segment_type => 'TABLE',
fs1_bytes => l_fs1_bytes,
fs1_blocks => l_fs1_blocks,
fs2_bytes => l_fs2_bytes,
fs2_blocks => l_fs2_blocks,
fs3_bytes => l_fs3_bytes,
fs3_blocks => l_fs3_blocks,
fs4_bytes => l_fs4_bytes,
fs4_blocks => l_fs4_blocks,
full_bytes => l_full_bytes,
full_blocks => l_full_blocks,
unformatted_blocks => l_unformatted_blocks,
unformatted_bytes => l_unformatted_bytes

);
DBMS_OUTPUT.ENABLE;
DBMS_OUTPUT.PUT_LINE(' FS1 Blocks = '||l_fs1_blocks||'

Bytes = '||l_fs1_bytes);
DBMS_OUTPUT.PUT_LINE(' FS2 Blocks = '||l_fs2_blocks||'

Bytes = '||l_fs2_bytes);
DBMS_OUTPUT.PUT_LINE(' FS3 Blocks = '||l_fs3_blocks||'

Bytes = '||l_fs3_bytes);
DBMS_OUTPUT.PUT_LINE(' FS4 Blocks = '||l_fs4_blocks||'

Bytes = '||l_fs4_bytes);
DBMS_OUTPUT.PUT_LINE('Full Blocks = '||l_full_blocks||'

Bytes = '||l_full_bytes);
DBMS_OUTPUT.PUT_LINE('====================================

=========');

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 8 - 33

Practice 8 (continued)
DBMS_OUTPUT.PUT_LINE('Total Blocks =

'||to_char(l_fs1_blocks + l_fs2_blocks +
l_fs3_blocks + l_fs4_blocks + l_full_blocks)|| ' ||
Total Bytes = '|| to_char(l_fs1_bytes + l_fs2_bytes
+ l_fs3_bytes + l_fs4_bytes + l_full_bytes));

END;
/

set serveroutput on
execute check_space;

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Copyright © 2008, Oracle. All rights reserved.

Performance and Tuning

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 9 - 2

Copyright © 2008, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:
• Understand and influence the compiler
• Tune PL/SQL code
• Enable intraunit inlining

Objectives
In this lesson, the performance and tuning topics are divided into three main groups:

• Native and interpreted compilation
• Tuning PL/SQL code
• Intraunit inlining

In the compilation section, you learn about native and interpreted compilation.
In the “Tuning PL/SQL Code” section, you learn why it is important to write smaller, executable
sections of code, when to use SQL or PL/SQL, how bulk binds can improve performance, how
to use the FORALL syntax, how to rephrase conditional statements, about data types and
constraint issues.
With inlining, the compiler reviews code to see whether it can be inlined rather than referenced.
You can influence the inlining process.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 9 - 3

Copyright © 2008, Oracle. All rights reserved.

Lesson Agenda

• Using native and interpreted compilation methods
• Tuning PL/SQL code
• Enabling intraunit inlining

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 9 - 4

Copyright © 2008, Oracle. All rights reserved.

Native and Interpreted Compilation

Two compilation methods:
• Interpreted compilation

– Default compilation method
– Interpreted at run time

• Native compilation
– Compiles into native code
– Stored in the SYSTEM tablespace

Native and Interpreted Compilation
You can compile your PL/SQL code by using either native compilation or interpreted
compilation.
With interpreted compilation, the PL/SQL statements in a PL/SQL program unit are compiled
into an intermediate form, machine-readable code, which is stored in the database dictionary and
interpreted at run time. You can use PL/SQL debugging tools on program units compiled for
interpreted mode.
With PL/SQL native compilation, the PL/SQL statements in a PL/SQL program unit are
compiled into native code and stored in the SYSTEM tablespace. Because the native code does
not have to be interpreted at run time, it runs faster.
Native compilation applies only to PL/SQL statements. If your PL/SQL program contains only
calls to SQL statements, it may not run faster when natively compiled, but it will run at least as
fast as the corresponding interpreted code. The compiled code and the interpreted code make the
same library calls, so their action is the same.
The first time a natively compiled PL/SQL program unit is executed, it is fetched from the
SYSTEM tablespace into the shared memory. Regardless of how many sessions call the program
unit, the shared memory has only one copy of it. If a program unit is not being used, the shared
memory it is using might be freed, to reduce the memory load.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 9 - 5

Copyright © 2008, Oracle. All rights reserved.

Deciding on a Compilation Method

• Use the interpreted mode when (typically during
development):

– You are using a debugging tool, such as SQL Developer
– You need the code compiled quickly

• Use the native mode when (typically post development):
– Your code is heavily PL/SQL based
– You are looking for increased performance in production

Native

Interpreted

Deciding on a Compilation Method
When deciding on a compilation method, you need to examine:

• Where you are in the development cycle
• What the program unit does

If you are debugging and recompiling program units frequently, the interpreted mode has these
advantages:

• You can use PL/SQL debugging tools on program units compiled for interpreted mode (but
not for those compiled for native mode).

• Compiling for interpreted mode is faster than compiling for native mode.
After completing the debugging phase of development, consider the following in determining
whether to compile a PL/SQL program unit for native mode:

• The native mode provides the greatest performance gains for computation-intensive
procedural operations. Examples are data warehouse applications and applications with
extensive server-side transformations of data for display.

• The native mode provides the least performance gains for PL/SQL subprograms that spend
most of their time executing SQL.

• When many program units (typically over 15,000) are compiled for native execution, and
are simultaneously active, the large amount of shared memory required might affect system
performance.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 9 - 6

Copyright © 2008, Oracle. All rights reserved.

Setting the Compilation Method

• PLSQL_CODE_TYPE: Specifies the compilation mode for the
PL/SQL library units

• PLSQL_OPTIMIZE_LEVEL: Specifies the optimization level
to be used to compile the PL/SQL library units

• In general, for fastest performance, use the following setting:

PLSQL_CODE_TYPE = { INTERPRETED | NATIVE }

PLSQL_OPTIMIZE_LEVEL = { 0 | 1 | 2 | 3}

PLSQL_CODE_TYPE = NATIVE
PLSQL_OPTIMIZE_LEVEL = 2

Using the Initialization Parameters for PL/SQL Compilation
The PLSQL_CODE_TYPE Parameter
The PLSQL_CODE_TYPE compilation parameter determines whether the PL/SQL code is
natively compiled or interpreted.
If you choose INTERPRETED:

• PL/SQL library units are compiled to PL/SQL bytecode format.
• These modules are executed by the PL/SQL interpreter engine.

If you choose NATIVE:
• PL/SQL library units (with the possible exception of top-level anonymous PL/SQL blocks)

are compiled to native (machine) code.
• Such modules are executed natively without incurring interpreter overhead.

When the value of this parameter is changed, it has no effect on the PL/SQL library units that
have already been compiled. The value of this parameter is stored persistently with each library
unit. If a PL/SQL library unit is compiled natively, all subsequent automatic recompilations of
that library unit use the native compilation. In Oracle Database 11g, native compilation is easier
and more integrated, with fewer initialization parameters to set.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 9 - 7

Using the PL/SQL Initialization Parameters (continued)
The PLSQL_OPTIMIZE_LEVEL Parameter
This parameter specifies the optimization level that is used to compile the PL/SQL library units.
The higher the setting of this parameter, the more effort the compiler makes to optimize the
PL/SQL library units. The available values are (0, 1, and 2 were available starting with Oracle
10g, release 2):
0: Maintains the evaluation order and hence the pattern of side effects, exceptions, and package
initializations of Oracle9i and earlier releases. Also removes the new semantic identity of
BINARY_INTEGER and PLS_INTEGER, and restores the earlier rules for the evaluation of
integer expressions. Although the code runs somewhat faster than it did in Oracle9i, the use of
level 0 forfeits most of the performance gains of PL/SQL starting with Oracle Database 10g.
1: Applies a wide range of optimizations to PL/SQL programs, including the elimination of
unnecessary computations and exceptions, but generally does not move source code out of its
original source order.
2: Applies a wide range of modern optimization techniques beyond those of level 1, including
changes that may move source code relatively far from its original location.
3: This value is available in Oracle Database 11g. It applies a wide range of optimization
techniques beyond those of level 2, automatically including techniques not specifically
requested. This enables procedure inlining, which is an optimization process that replaces
procedure calls with a copy of the body of the procedure to be called. The copied procedure
almost always runs faster than the original call. To allow subprogram inlining, either accept the
default value of the PLSQL_OPTIMIZE_LEVEL initialization parameter (which is 2) or set it
to 3. With PLSQL_OPTIMIZE_LEVEL = 2, you must specify each subprogram to be inlined.
With PLSQL_OPTIMIZE_LEVEL = 3, the PL/SQL compiler seeks opportunities to inline
subprograms beyond those that you specify.
Generally, setting this parameter to 2 pays off in terms of better execution performance. If,
however, the compiler runs slowly on a particular source module or if optimization does not
make sense for some reason (for example, during rapid turnaround development), setting this
parameter to 1 results in almost as good a compilation with less use of compile-time resources.
The value of this parameter is stored persistently with the library unit.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 9 - 8

Copyright © 2008, Oracle. All rights reserved.

Viewing the Compilation Settings

Use the USER|ALL|DBA_PLSQL_OBJECT_SETTINGS data
dictionary views to display the settings for a PL/SQL object:

DESCRIBE ALL_PLSQL_OBJECT_SETTINGS

Name Null? Type
------------------------- -------- --------------------
OWNER NOT NULL VARCHAR2(30)
NAME NOT NULL VARCHAR2(30)
TYPE VARCHAR2(12)
PLSQL_OPTIMIZE_LEVEL NUMBER
PLSQL_CODE_TYPE VARCHAR2(4000)
PLSQL_DEBUG VARCHAR2(4000)
PLSQL_WARNINGS VARCHAR2(4000)
NLS_LENGTH_SEMANTICS VARCHAR2(4000)
PLSQL_CCFLAGS VARCHAR2(4000)
PLSCOPE_SETTINGS VARCHAR2(4000)

Displaying the PL/SQL Initialization Parameters
The columns of the USER_PLSQL_OBJECTS_SETTINGS data dictionary view include:
Owner: The owner of the object. This column is not displayed in the
USER_PLSQL_OBJECTS_SETTINGS view.
Name: The name of the object
Type: The available choices are PROCEDURE, FUNCTION, PACKAGE, PACKAGE BODY,
TRIGGER, TYPE, or TYPE BODY.
PLSQL_OPTIMIZE_LEVEL: The optimization level that was used to compile the object
PLSQL_CODE_TYPE: The compilation mode for the object
PLSQL_DEBUG: Specifies whether or not the object was compiled for debugging
PLSQL_WARNINGS: The compiler warning settings used to compile the object
NLS_LENGTH_SEMANTICS: The national language support (NLS) length semantics used to
compile the object
PLSQL_CCFLAGS: The conditional compilation flag used to compile the object
PLSCOPE_SETTINGS: Controls the compile time collection, cross reference, and storage of
PL/SQL source code identifier data (new in Oracle Database 11g)

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 9 - 9

Copyright © 2008, Oracle. All rights reserved.

Viewing the Compilation Settings

SELECT name, plsql_code_type, plsql_optimize_level
FROM user_plsql_object_settings;

NAME PLSQL_CODE_TYP PLSQL_OPTIMIZE_LEVEL
-------------------- -------------- --------------------
ACTIONS_T INTERPRETED 2
ACTION_T INTERPRETED 2
ACTION_V INTERPRETED 2
ADD_ORDER_ITEMS INTERPRETED 2
CATALOG_TYP INTERPRETED 2
CATALOG_TYP INTERPRETED 2
CATALOG_TYP INTERPRETED 2
CATEGORY_TYP INTERPRETED 2
CATEGORY_TYP INTERPRETED 2
COMPOSITE_CATEGORY_TYP INTERPRETED 2
...

Displaying the PL/SQL Initialization Parameters (continued)
Set the values of the compiler initialization parameters by using the ALTER SYSTEM or ALTER
SESSION statements.
The parameters’ values are accessed when the CREATE OR REPLACE or ALTER statements are
executed.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 9 - 10

Copyright © 2008, Oracle. All rights reserved.

Setting Up a Database for Native Compilation

• This requires DBA privileges.
• The PLSQL_CODE_TYPE compilation parameter must be

set to NATIVE.
• The benefits apply to all the built-in PL/SQL packages that

are used for many database operations.

ALTER SYSTEM SET PLSQL_CODE_TYPE = NATIVE;

Setting Up a Database for Native Compilation
If you have DBA privileges, you can set up a new database for PL/SQL native compilation by
setting the PLSQL_CODE_TYPE compilation parameter to NATIVE. The performance benefits
apply to all built-in PL/SQL packages that are used for many database operations.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 9 - 11

Copyright © 2008, Oracle. All rights reserved.

Compiling a Program Unit for Native Compilation

SELECT name, plsql_code_type, plsql_optimize_level
FROM user_plsql_object_settings
WHERE name = 'ADD_ORDER_ITEMS';

NAME PLSQL_CODE_T PLSQL_OPTIMIZE_LEVEL
---------------------- ------------ --------------------
ADD_ORDER_ITEMS INTERPRETED 2
ALTER SESSION SET PLSQL_CODE_TYPE = 'NATIVE';

ALTER PROCEDURE add_order_items COMPILE;

SELECT name, plsql_code_type, plsql_optimize_level
FROM user_plsql_object_settings
WHERE name = 'ADD_ORDER_ITEMS';

NAME PLSQL_CODE_T PLSQL_OPTIMIZE_LEVEL
---------------------- ------------ --------------------
ADD_ORDER_ITEMS NATIVE 2

1

2
3

4

Changing PL/SQL Initialization Parameters: Example
To change a compiled PL/SQL object from interpreted code type to native code type, you must
set the PLSQL_CODE_TYPE parameter to NATIVE (optionally set the other parameters), and
then recompile the program.
In the example shown above:

1. The compilation type is checked on the ADD_ORDER_ITEMS program unit.
2. The compilation method is set to NATIVE at the session level.
3. The ADD_ORDER_ITEMS program unit is recompiled.
4. The compilation type is checked again on the ADD_ORDER_ITEMS program unit to verify

that it changed.
If you want to compile an entire database for native or interpreted compilation, scripts are
provided to help you do so.

• You require DBA privileges.
• Set PLSQL_CODE_TYPE at the system level.
• Run the dbmsupgnv.sql-supplied script that is found in the
\Oraclehome\product\11.1.0\db_1\RDBMS\ADMIN folder.

For detailed information, see the Oracle® Database PL/SQL Language Reference 11g reference
manual.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 9 - 12

Copyright © 2008, Oracle. All rights reserved.

Lesson Agenda

• Using native and interpreted compilation methods
• Tuning PL/SQL code
• Enabling intraunit inlining

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 9 - 13

Copyright © 2008, Oracle. All rights reserved.

Tuning PL/SQL Code

You can tune your PL/SQL code by:
• Identifying the data type and constraint issues

– Data type conversion
– The NOT NULL constraint
– PLS_INTEGER

– SIMPLE_INTEGER

• Writing smaller executable sections of code
• Comparing SQL with PL/SQL
• Understanding how bulk binds can improve performance
• Using the FORALL support with bulk binding
• Handling and saving exceptions with the SAVE
EXCEPTIONS syntax

• Rephrasing conditional statements

Tuning PL/SQL Code
By tuning your PL/SQL code, you can tailor its performance to best meet your needs. In the
following pages, you learn about some of the main PL/SQL tuning issues that can improve the
performance of your PL/SQL applications.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 9 - 14

Copyright © 2008, Oracle. All rights reserved.

DECLARE
n NUMBER;

BEGIN
n := n + 15; -- converted
n := n + 15.0; -- not converted
...

END;

Avoiding Implicit Data Type Conversion

• PL/SQL performs implicit conversions between structurally
different data types.

• Example: When assigning a PLS_INTEGER variable to a
NUMBER variable

strings

dates

numbers

Avoiding Implicit Data Type Conversion
At run time, PL/SQL automatically performs implicit conversions between structurally different
data types. By avoiding implicit conversions, you can improve the performance of your code.
The major problems with implicit data type conversion are:

• It is nonintuitive and can result in unexpected results.
• You have no control over the implicit conversion.

In the slide example, assigning a PLS_INTEGER variable to a NUMBER variable or vice versa
results in a conversion, because their representations are different. Such implicit conversions can
happen during parameter passing as well. The integer literal 15 is represented internally as a
signed 4-byte quantity, so PL/SQL must convert it to an Oracle number before the addition.
However, the floating-point literal 15.0 is represented as a 22-byte Oracle number, so no
conversion is necessary.
To avoid implicit data type conversion, you can use the built-in functions:
• TO_DATE
• TO_NUMBER
• TO_CHAR
• CAST

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 9 - 15

Copyright © 2008, Oracle. All rights reserved.

Understanding the NOT NULL Constraint

PROCEDURE calc_m IS

m NUMBER NOT NULL:=0;

a NUMBER;

b NUMBER;

BEGIN

...

m := a + b;

...

END;

PROCEDURE calc_m IS

m NUMBER; --no
--constraint

a NUMBER;

b NUMBER;

BEGIN

...

m := a + b;

IF m IS NULL THEN

-- raise error

END IF;

END;

The NOT NULL Constraint
In PL/SQL, using the NOT NULL constraint incurs a small performance cost. Therefore, use it
with care. Consider the example on the left in the slide that uses the NOT NULL constraint for m.
Because m is constrained by NOT NULL, the value of the expression a + b is assigned to a
temporary variable, which is then tested for nullity. If the variable is not null, its value is
assigned to m. Otherwise, an exception is raised. However, if m were not constrained, the value
would be assigned to m directly.
A more efficient way to write the same example is shown on the right in the slide.
Note that the subtypes NATURALN and POSTIVEN are defined as the NOT NULL subtypes of
NATURAL and POSITIVE. Using them incurs the same performance cost as seen above.
Using the NOT NULL Constraint Not Using the Constraint
Slower Faster
No extra coding is needed. Requires extra coding that is error prone
When an error is implicitly raised, the
value of m is preserved.

When an error is explicitly raised, the
old value of m is lost.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 9 - 16

Copyright © 2008, Oracle. All rights reserved.

Using the PLS_INTEGER Data Type for Integers

Use PLS_INTEGER when dealing with integer data:
• It is an efficient data type for integer variables.
• It requires less storage than INTEGER or NUMBER.
• Its operations use machine arithmetic, which is faster than

library arithmetic.

Using the PLS_INTEGER Data Type for All Integer Operations
When you need to declare an integer variable, use the PLS_INTEGER data type, which is the
most efficient numeric type. That is because PLS_INTEGER values require less storage than
INTEGER or NUMBER values, which are represented internally as 22-byte Oracle numbers.
Also, PLS_INTEGER operations use machine arithmetic, so they are faster than
BINARY_INTEGER, INTEGER, or NUMBER operations, which use library arithmetic.
Furthermore, INTEGER, NATURAL, NATURALN, POSITIVE, POSITIVEN, and SIGNTYPE
are constrained subtypes. Their variables require precision checking at run time that can affect
the performance.
The BINARY_FLOAT and BINARY_DOUBLE data types are also faster than the NUMBER data
type.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 9 - 17

Copyright © 2008, Oracle. All rights reserved.

Using the SIMPLE_INTEGER Data Type

• Definition:
– Is a predefined subtype
– Has the range –2147483648 .. 2147483648
– Does not include a null value
– Is allowed anywhere in PL/SQL where the PLS_INTEGER

data type is allowed
• Benefits:

– Eliminates the overhead of overflow
checking

– Is estimated to be 2–10 times faster
when compared with the PLS_INTEGER
type with native PL/SQL compilation

Using the SIMPLE_INTEGER Data Type
The SIMPLE_INTEGER data type is a predefined subtype of the BINARY_INTEGER (or
PLS_INTEGER) data type that has the same numeric range as BINARY_INTEGER. It differs
significantly from PLS_INTEGER in its overflow semantics. Incrementing the largest
SIMPLE_INTEGER value by one silently produces the smallest value, and decrementing the
smallest value by one silently produces the largest value. These “wrap around” semantics
conform to the Institute of Electrical and Electronics Engineers (IEEE) standard for 32-bit
integer arithmetic.
The key features of the SIMPLE_INTEGER predefined subtype are the following:

• Includes the range of –2147483648.. +2147483648
• Has a not null constraint
• Wraps rather than overflows
• Is faster than PLS_INTEGER

Without the overhead of overflow checking and nullness checking, the SIMPLE_INTEGER
data type provides significantly better performance than PLS_INTEGER when the parameter
PLSQL_CODE_TYPE is set to native, because arithmetic operations on the former are
performed directly in the machine’s hardware. The performance difference is less noticeable
when the parameter PLSQL_CODE_TYPE is set to interpreted but even with this setting,
the SIMPLE_INTEGER type is faster than the PLS_INTEGER type.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 9 - 18

Copyright © 2008, Oracle. All rights reserved.

Modularizing Your Code

• Limit the number of lines of code between a BEGIN and END
to about a page or 60 lines of code.

• Use packaged programs to keep each executable section
small.

• Use local procedures and functions to hide logic.
• Use a function interface to hide formulas and business rules.

Write Smaller Executable Sections
By writing smaller sections of executable code, you can make the code easier to read,
understand, and maintain. When developing an application, use a stepwise refinement. Make a
general description of what you want your program to do, and then implement the details in
subroutines. Using local modules and packaged programs can help keep each executable section
small. This makes it easier for you to debug and refine your code.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 9 - 19

Copyright © 2008, Oracle. All rights reserved.

Comparing SQL with PL/SQL

Each has its own benefits:
• SQL:

– Accesses data in the database
– Treats data as sets

• PL/SQL:
– Provides procedural capabilities
– Has more flexibility built into the language

SQL Versus PL/SQL
Both SQL and PL/SQL have their strengths. However, there are situations where one language is
more appropriate to use than the other.
You use SQL to access data in the database with its powerful statements. SQL processes sets of
data as groups rather than as individual units. The flow-control statements of most programming
languages are absent in SQL, but present in PL/SQL. When using SQL in your PL/SQL
applications, be sure not to repeat a SQL statement. Instead, encapsulate your SQL statements in
a package and make calls to the package.
Using PL/SQL, you can take advantage of the PL/SQL-specific enhancements for SQL, such as
autonomous transactions, fetching into cursor records, using a cursor FOR loop, using the
RETURNING clause for information about modified rows, and using BULK COLLECT to
improve the performance of multiple-row queries.
Though there are advantages of using PL/SQL over SQL in several cases, use PL/SQL with
caution, especially under the following circumstances:

• Performing high-volume inserts
• Using user-defined PL/SQL functions
• Using external procedure calls
• Using the utl_file package as an alternative to SQL*Plus in high-volume reporting

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 9 - 20

Copyright © 2008, Oracle. All rights reserved.

...FOR I IN 1..5600 LOOP
counter := counter + 1;
SELECT product_id, warehouse_id

INTO v_p_id, v_wh_id
FROM big_inventories WHERE v_p_id = counter;

INSERT INTO inventories2 VALUES(v_p_id, v_wh_id);
END LOOP;...

Comparing SQL with PL/SQL

• Some simple set processing is markedly faster than the
equivalent PL/SQL.

• Avoid using procedural code when it may be better to
use SQL.

BEGIN
INSERT INTO inventories2
SELECT product_id, warehouse_id
FROM main_inventories;

END;

SQL Versus PL/SQL (continued)
The SQL statement explained in the slide is a great deal faster than the equivalent PL/SQL loop.
Take advantage of the simple set processing operations that are implicitly available in the SQL
language, as it can run markedly faster than the equivalent PL/SQL loop. Avoid writing
procedural code when SQL would work better.
However, there are occasions when you will get better performance from PL/SQL, even when
the process could be written in SQL. Correlated updates are slow. With correlated updates, a
better method is to access only correct rows by using PL/SQL. The following PL/SQL loop is
faster than the equivalent correlated update SQL statement.

DECLARE
CURSOR cv_raise IS

SELECT deptno, increase
FROM emp_raise;

BEGIN
FOR dept IN cv_raise LOOP

UPDATE big_emp
SET sal = sal * dept.increase
WHERE deptno = dept.deptno;

END LOOP;
...

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 9 - 21

Copyright © 2008, Oracle. All rights reserved.

Comparing SQL with PL/SQL

• Instead of:

• Create a stand-alone procedure:

• Or a packaged procedure:

insert_order_item (
2458, 6, 3515, 2.00, 4);

...

INSERT INTO order_items

(order_id, line_item_id, product_id,

unit_price, quantity)

VALUES (...

orderitems.ins (
2458, 6, 3515, 2.00, 4);

Encapsulating SQL Statements
From a design standpoint, do not embed your SQL statements directly within the application
code. It is better if you write procedures to perform your SQL statements.
Pros

• If you design your application so that all programs that perform an insert on a specific table
use the same INSERT statement, your application will run faster because of less parsing
and reduced demands on the System Global Area (SGA) memory.

• Your program will also handle data manipulation language (DML) errors consistently.
Cons

• You may need to write more procedural code.
• You may need to write several variations of update or insert procedures to handle the

combinations of columns that you are updating or inserting into.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 9 - 22

Copyright © 2008, Oracle. All rights reserved.

Using Bulk Binding

Use bulk binds to reduce context switches between the PL/SQL
engine and the SQL engine.

SQL enginePL/SQL run-time engine

PL/SQL block

FORALL j IN 1..1000
INSERT …
(OrderId(j),

OrderDate(j), …);

SQL
statement
executor

Procedural
statement
executor

Using Bulk Binding
With bulk binds, you can improve performance by decreasing the number of context switches
between the SQL and PL/SQL engines. When a PL/SQL program executes, each time a SQL
statement is encountered, there is a switch between the PL/SQL engine and the SQL engine. The
more the number of switches, the less the efficiency.
Improved Performance
Bulk binding enables you to implement array fetching. With bulk binding, entire collections, not
just individual elements, are passed back and forth. Bulk binding can be used with nested tables,
varrays, and associative arrays.
The more the rows affected by a SQL statement, the greater is the performance gain with bulk
binding.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 9 - 23

Copyright © 2008, Oracle. All rights reserved.

Using Bulk Binding

Bind whole arrays of values simultaneously, rather than looping
to perform fetch, insert, update, and delete on multiple rows.
• Instead of:

• Use:

...
FOR i IN 1 .. 50000 LOOP

INSERT INTO bulk_bind_example_tbl
VALUES(...);

END LOOP; ...

...
FORALL i IN 1 .. 50000

INSERT INTO bulk_bind_example_tbl
VALUES(...);

...

Using Bulk Binding (continued)
In the first example shown in the slide, one row at a time is inserted into the target table. In the
second example, the FOR loop is changed to a FORALL (which has an implicit loop) and all the
immediately subsequent DML statements are processed in bulk. The entire code examples, along
with the timing statistics for running each FOR loop example, are as follows.
First, create the demonstration table:

CREATE TABLE bulk_bind_example_tbl (
num_col NUMBER,
date_col DATE,
char_col VARCHAR2(40));

Second, set the SQL*Plus TIMING variable on. Setting it on enables you to see the approximate
elapsed time of the last SQL statement:

SET TIMING ON

Third, run this block of code that includes a FOR loop to insert 50,000 rows:
DECLARE

TYPE typ_numlist IS TABLE OF NUMBER;
TYPE typ_datelist IS TABLE OF DATE;
TYPE typ_charlist IS TABLE OF VARCHAR2(40)

INDEX BY PLS_INTEGER;
-- continued on the next page

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 9 - 24

Using Bulk Binding (continued)
-- continued from previous page

n typ_numlist := typ_numlist();
d typ_datelist := typ_datelist();
c typ_charlist;

BEGIN
FOR i IN 1 .. 50000 LOOP

n.extend;
n(i) := i;
d.extend;
d(i) := sysdate + 1;
c(i) := lpad(1, 40);

END LOOP;
FOR I in 1 .. 50000 LOOP

INSERT INTO bulk_bind_example_tbl
VALUES (n(i), d(i), c(i));

END LOOP;
END;
/

2.184ms elapsed

Last, run this block of code that includes a FORALL loop to insert 50,000 rows. Note the
significant decrease in the timing when using the FORALL processing:

DECLARE
TYPE typ_numlist IS TABLE OF NUMBER;
TYPE typ_datelist IS TABLE OF DATE;
TYPE typ_charlist IS TABLE OF VARCHAR2(40)

INDEX BY PLS_INTEGER;

n typ_numlist := typ_numlist();
d typ_datelist := typ_datelist();
c typ_charlist;

BEGIN
FOR i IN 1 .. 50000 LOOP

n.extend;
n(i) := i;
d.extend;
d(i) := sysdate + 1;
c(i) := lpad(1, 40);

END LOOP;
FORALL I in 1 .. 50000

INSERT INTO bulk_bind_example_tbl
VALUES (n(i), d(i), c(i));

END;
/

828ms elapsed

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 9 - 25

Copyright © 2008, Oracle. All rights reserved.

Using Bulk Binding

Use BULK COLLECT to improve performance:
CREATE OR REPLACE PROCEDURE process_customers
(p_account_mgr customers.account_mgr_id%TYPE)

IS
TYPE typ_numtab IS TABLE OF
customers.customer_id%TYPE;

TYPE typ_chartab IS TABLE OF
customers.cust_last_name%TYPE;

TYPE typ_emailtab IS TABLE OF
customers.cust_email%TYPE;

v_custnos typ_numtab;
v_last_names typ_chartab;
v_emails typ_emailtab;

BEGIN
SELECT customer_id, cust_last_name, cust_email
BULK COLLECT INTO v_custnos, v_last_names, v_emails
FROM customers
WHERE account_mgr_id = p_account_mgr;

...
END process_customers;

Using BULK COLLECT
When you require a large number of rows to be returned from the database, you can use the
BULK COLLECT option for queries. This option enables you to retrieve multiple rows of data in
a single request. The retrieved data is then populated into a series of collection variables. This
query runs significantly faster than if it were done without the BULK COLLECT.
You can use the BULK COLLECT option with explicit cursors too:

BEGIN
OPEN cv_customers INTO customers_rec;
FETCH cv_customers BULK COLLECT INTO

v_custnos, v_last_name, v_mails;
...

You can also use the LIMIT option with BULK COLLECT. This gives you control over the
amount of processed rows in one step.

FETCH cv_customers BULK COLLECT
INTO v_custnos, v_last_name, v_email
LIMIT 200;

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 9 - 26

Copyright © 2008, Oracle. All rights reserved.

Using Bulk Binding

Use the RETURNING clause to retrieve information about the
rows that are being modified:

DECLARE
TYPE typ_replist IS VARRAY(100) OF NUMBER;
TYPE typ_numlist IS TABLE OF

orders.order_total%TYPE;
repids typ_replist :=

typ_replist(153, 155, 156, 161);
totlist typ_numlist;
c_big_total CONSTANT NUMBER := 60000;

BEGIN
FORALL i IN repids.FIRST..repids.LAST
UPDATE orders
SET order_total = .95 * order_total
WHERE sales_rep_id = repids(i)
AND order_total > c_big_total
RETURNING order_total BULK COLLECT INTO Totlist;

END;

The RETURNING Clause
Often, applications need information about the row that is affected by a SQL operation; for
example, to generate a report or take action. Using the RETURNING clause, you can retrieve
information about the rows that you modified with the INSERT, UPDATE, and DELETE
statements. This can improve performance, because it enables you to make changes, and at the
same time, collect information about the data being changed. As a result, fewer network round
trips, less server CPU time, fewer cursors, and less server memory are required. Without the
RETURNING clause, you need two operations: one to make the change, and a second operation
to retrieve information about the change. In the slide example, the order_total information
is retrieved from the ORDERS table and collected into the totlist collection. The totlist
collection is returned in bulk to the PL/SQL engine.
If you did not use the RETURNING clause, you would need to perform two operations, one for
the UPDATE, and another for the SELECT:

UPDATE orders SET order_total = .95 * order_total
WHERE sales_rep_id = p_id
AND order_total > c_big_total;

SELECT order_total FROM orders
WHERE sales_rep_id = p_id AND order_total > c_big_total;

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 9 - 27

The RETURNING Clause (continued)
In the following example, you update the credit limit of a customer and at the same time retrieve
the customer’s new credit limit into a SQL Developer environment variable:

CREATE OR REPLACE PROCEDURE change_credit
(p_in_id IN customers.customer_id%TYPE,
o_credit OUT NUMBER)

IS
BEGIN
UPDATE customers
SET credit_limit = credit_limit * 1.10
WHERE customer_id = p_in_id
RETURNING credit_limit INTO o_credit;

END change_credit;
/
VARIABLE g_credit NUMBER
EXECUTE change_credit(109, :g_credit)
PRINT g_credit

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 9 - 28

Copyright © 2008, Oracle. All rights reserved.

Using SAVE EXCEPTIONS

• You can use the SAVE EXCEPTIONS keyword in your
FORALL statements:

• Exceptions raised during execution are saved in the
%BULK_EXCEPTIONS cursor attribute.

• The attribute is a collection of records with two fields:

– Note that the values always refer to the most recently
executed FORALL statement.

FORALL index IN lower_bound..upper_bound
SAVE EXCEPTIONS
{insert_stmt | update_stmt | delete_stmt}

ERROR_CODE

ERROR_INDEX

Field

Holds the iteration of the FORALL statement where the
exception was raised

Holds the corresponding Oracle error code

Definition

Handling FORALL Exceptions
To handle the exceptions encountered during a BULK BIND operation, you can add the keyword
SAVE EXCEPTIONS to your FORALL statement. Without it, if a row fails during the FORALL
loop, the loop execution is terminated. SAVE_EXCEPTIONS allows the loop to continue
processing and is required if you want the loop to continue.
All exceptions raised during the execution are saved in the %BULK_EXCEPTIONS cursor
attribute, which stores a collection of records. This cursor attribute is available only from the
exception handler.
Each record has two fields. The first field, %BULK_EXCEPTIONS(i).ERROR_INDEX, holds
the “iteration” of the FORALL statement during which the exception was raised. The second
field, BULK_EXCEPTIONS(i).ERROR_CODE, holds the corresponding Oracle error code.
The values stored by %BULK_EXCEPTIONS always refer to the most recently executed
FORALL statement. The number of exceptions is saved in the count attribute of
%BULK_EXCEPTIONS; that is, %BULK_EXCEPTIONS.COUNT. Its subscripts range from 1 to
COUNT. If you omit the SAVE EXCEPTIONS keyword, execution of the FORALL statement
stops when an exception is raised. In that case, SQL%BULK_EXCEPTIONS.COUNT returns 1,
and SQL%BULK_EXCEPTIONS contains just one record. If no exception is raised during the
execution, SQL%BULK_EXCEPTIONS.COUNT returns 0.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 9 - 29

Copyright © 2008, Oracle. All rights reserved.

Handling FORALL Exceptions

DECLARE
TYPE NumList IS TABLE OF NUMBER;
num_tab NumList :=

NumList(100,0,110,300,0,199,200,0,400);
bulk_errors EXCEPTION;
PRAGMA EXCEPTION_INIT (bulk_errors, -24381);

BEGIN
FORALL i IN num_tab.FIRST..num_tab.LAST
SAVE EXCEPTIONS
DELETE FROM orders WHERE order_total < 500000/num_tab(i);

EXCEPTION WHEN bulk_errors THEN
DBMS_OUTPUT.PUT_LINE('Number of errors is: '

|| SQL%BULK_EXCEPTIONS.COUNT);
FOR j in 1..SQL%BULK_EXCEPTIONS.COUNT
LOOP
DBMS_OUTPUT.PUT_LINE (
TO_CHAR(SQL%BULK_EXCEPTIONS(j).error_index) ||
' / ' ||
SQLERRM(-SQL%BULK_EXCEPTIONS(j).error_code));

END LOOP;
END;
/

Example
In this example, the EXCEPTION_INIT pragma defines an exception named BULK_ERRORS
and associates the name with the ORA-24381 code, which is an “Error in Array DML.”
The PL/SQL block raises the predefined exception ZERO_DIVIDE when i equals 2, 5, 8. After
the bulk bind is completed, SQL%BULK_EXCEPTIONS.COUNT returns 3, because the code
tried to divide by zero three times. To get the Oracle error message (which includes the code),
you pass SQL%BULK_EXCEPTIONS(i).ERROR_CODE to the error-reporting function
SQLERRM. Here is the output:

Number of errors is: 5
Number of errors is: 3
2 / ORA-01476: divisor is equal to zero
5 / ORA-01476: divisor is equal to zero
8 / ORA-01476: divisor is equal to zero

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 9 - 30

Copyright © 2008, Oracle. All rights reserved.

IF credit_ok(cust_id) AND (v_order_total < 5000) THEN

...

END IF;

Rephrasing Conditional
Control Statements

In logical expressions, PL/SQL stops evaluating the expression
as soon as the result is determined.
• Scenario 1:

• Scenario 2:

IF | OR (v_sales_rep_id IS NULL) THEN
...
...

END IF;

TRUE FALSE

Rephrasing Conditional Control Statements
In logical expressions, improve performance by carefully tuning conditional constructs.
When evaluating a logical expression, PL/SQL stops evaluating the expression as soon as the
result is determined. For example, in the first scenario in the slide, which involves an OR
expression, when the value of the left operand yields TRUE, PL/SQL need not evaluate the right
operand (because OR returns TRUE if either of its operands is true).
Now, consider the second scenario in the slide, which involves an AND expression. The Boolean
function CREDIT_OK is always called. However, if you switch the operands of AND as follows,
the function is called only when the expression v_order_total < 5000 is true (because
AND returns TRUE only if both its operands are true):

IF (v_order_total < 5000) AND credit_ok(cust_id) THEN
...

END IF;

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 9 - 31

Copyright © 2008, Oracle. All rights reserved.

Rephrasing Conditional
Control Statements

If your business logic results in one condition being true, use
the ELSIF syntax for mutually exclusive clauses:

IF v_acct_mgr = 145 THEN

process_acct_145;

END IF;

IF v_acct_mgr = 147 THEN

process_acct_147;

END IF;

IF v_acct_mgr = 148 THEN

process_acct_148;

END IF;

IF v_acct_mgr = 149 THEN

process_acct_149;

END IF;

IF v_acct_mgr = 145

THEN

process_acct_145;

ELSIF v_acct_mgr = 147
THEN

process_acct_147;

ELSIF v_acct_mgr = 148
THEN

process_acct_148;

ELSIF v_acct_mgr = 149
THEN

process_acct_149;

END IF;

Mutually Exclusive Conditions
If you have a situation where you are checking a list of choices for a mutually exclusive result,
use the ELSIF syntax, as it offers the most efficient implementation. With ELSIF, after a
branch evaluates to TRUE, the other branches are not executed.
In the example shown on the right in the slide, every IF statement is executed. In the example
on the left, after a branch is found to be true, the rest of the branch conditions are not evaluated.
Sometimes you do not need an IF statement. For example, the following code can be rewritten
without an IF statement:

IF date_ordered < sysdate + 7 THEN
late_order := TRUE;

ELSE
late_order := FALSE;

END IF;

--rewritten without an IF statement:
late_order := date_ordered < sysdate + 7;

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 9 - 32

Copyright © 2008, Oracle. All rights reserved.

Passing Data Between PL/SQL Programs

• The flexibility built into PL/SQL enables you to pass:
– Simple scalar variables
– Complex data structures

• You can use the NOCOPY hint to improve performance with
the IN OUT parameters.

Passing Data Between PL/SQL Programs
You can pass simple scalar data or complex data structures between PL/SQL programs.
When passing collections as parameters, you may encounter a slight decrease in performance as
compared with passing scalar data but the performance is still comparable. However, when
passing IN OUT parameters that are complex (such as collections) to a procedure, you will
experience significantly more overhead, because a copy of the parameter value is stored before
the routine is executed. The stored value must be kept in case an exception occurs. You can use
the NOCOPY compiler hint to improve performance in this situation. NOCOPY instructs the
compiler not to make a backup copy of the parameter that is being passed. However, be careful
when you use the NOCOPY compiler hint, because your results are not predictable if your
program encounters an exception.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 9 - 33

Copyright © 2008, Oracle. All rights reserved.

Passing Data Between PL/SQL Programs

Pass records as parameters to encapsulate data, as well as,
write and maintain less code:

DECLARE
TYPE CustRec IS RECORD (
customer_id customers.customer_id%TYPE,
cust_last_name VARCHAR2(20),
cust_email VARCHAR2(30),
credit_limit NUMBER(9,2));

...
PROCEDURE raise_credit (cust_info CustRec);

Passing Records as Arguments
You can declare user-defined records as formal parameters of procedures and functions as
shown in the slide. By using records to pass values, you are encapsulating the data being passed.
This requires less coding than defining, assigning, and manipulating each record field
individually.
When you call a function that returns a record, use the notation:

function_name(parameters).field_name

For example, the following call to the NTH_HIGHEST_ORD_TOTAL function references the
ORDER_TOTAL field in the ORD_INFO record:

DECLARE
TYPE OrdRec IS RECORD (
v_order_id NUMBER(6),
v_order_total REAL);
v_middle_total REAL;

FUNCTION nth_highest_total (n INTEGER) RETURN OrdRec IS
order_info OrdRec;

BEGIN ...
RETURN order_info; -- return record

END;
BEGIN -- call function

v_middle_total := nth_highest_total(10).v_order_total;
...

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 9 - 34

Copyright © 2008, Oracle. All rights reserved.

Passing Data Between PL/SQL Programs

Use collections as arguments:

PACKAGE cust_actions IS
TYPE NameTabTyp IS TABLE OF

customer.cust_last_name%TYPE
INDEX BY PLS_INTEGER;
TYPE CreditTabTyp IS TABLE OF

customers.credit_limit%TYPE
INDEX BY PLS_INTEGER;

...
PROCEDURE credit_batch(name_tab IN NameTabTyp ,

credit_tab IN CreditTabTyp,
...);

PROCEDURE log_names (name_tab IN NameTabTyp);
END cust_actions;

Passing Collections as Arguments
You can declare collections as formal parameters of procedures and functions. In the example in
the slide, associative arrays are declared as the formal parameters of two packaged procedures. If
you were to use scalar variables to pass the data, you would need to code and maintain many
more declarations.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 9 - 35

Copyright © 2008, Oracle. All rights reserved.

Lesson Agenda

• Using native and interpreted compilation methods
• Tuning PL/SQL code
• Enabling intraunit inlining

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 9 - 36

Copyright © 2008, Oracle. All rights reserved.

Introducing Intraunit Inlining

• Definition:
– Inlining is the replacement of a call to a subroutine with a copy

of the body of the subroutine that is called.
– The copied procedure generally runs faster than the original.
– The PL/SQL compiler can automatically find the calls that

should be inlined.
• Benefits:

– Inlining can provide large performance gains when applied
judiciously by a factor of 2–10 times.

Introducing Inlining
Procedure inlining is an optimization process that replaces procedure calls with a copy of the
body of the procedure to be called. The copied procedure almost always runs faster than the
original call, because:

• The need to create and initialize the stack frame for the called procedure is eliminated.
• The optimization can be applied over the combined text of the call context and the copied

procedure body.
• Propagation of constant actual arguments often causes the copied body to collapse under

optimization.
When inlining is achieved, you can see performance gains of 2–10 times.
With Oracle Database 11g, the PL/SQL compiler can automatically find calls that should be
inlined, and can do the inlining correctly and quickly. There are some controls to specify where
and when the compiler should do this work (using the PLSQL_OPTIMIZATION_LEVEL
database parameter), but usually, a general request is sufficient.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 9 - 37

Copyright © 2008, Oracle. All rights reserved.

Using Inlining

• Influence implementing inlining via two methods:
– Oracle parameter PLSQL_OPTIMIZE_LEVEL
– PRAGMA INLINE

• Recommend that you:
– Inline small programs
– Inline programs that are frequently executed

• Use performance tools to identify the hotspots that are
suitable for inline applications:

– plstimer

Using Inlining
When implementing inlining, it is recommended that the process be applied to smaller programs,
and/or programs that execute frequently. For example, you may want to inline small helper
programs.
To help you identify which programs to inline, you can use the plstimer PL/SQL
performance tool. This tool specifically analyzes program performance in terms of the time
spent in procedures and the time spent on particular call sites. It is important that you identify
the procedure calls that may benefit from inlining.
There are two ways to use inlining:

1. Set the PLSQL_OPTIMIZE_LEVEL parameter to 3. When this parameter is set to 3, the
PL/SQL compiler searches for calls that might profit from inlining and inlines the most
profitable calls. Profitability is measured by those calls that help the program speed up the
most and keep the compiled object program as short as possible.

ALTER SESSION SET plsql_optimize_level = 3;
2. Use PRAGMA INLINE in your PL/SQL code. This identifies whether a specific call should

be inlined. Setting this pragma to “YES” has an effect only if the optimize level is set to
two or higher.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 9 - 38

Copyright © 2008, Oracle. All rights reserved.

Inlining Concepts

Noninlined program:
CREATE OR REPLACE PROCEDURE small_pgm
IS
a NUMBER;
b NUMBER;

PROCEDURE touch(x IN OUT NUMBER, y NUMBER)
IS
BEGIN
IF y > 0 THEN
x := x*x;

END IF;
END;

BEGIN
a := b;
FOR I IN 1..10 LOOP
touch(a, -17);
a := a*b;

END LOOP;
END small_pgm;

Inlining Concepts
The example shown in the slide will be expanded to show you how a procedure is inlined.
The a:=a*b assignment at the end of the loop looks like it could be moved before the loop.
However, it cannot be, because a is passed as an IN OUT parameter to the TOUCH procedure.
The compiler cannot be certain what the procedure does to its parameters. This results in the
multiplication and in the assignment’s being completed 10 times instead of only once, even
though multiple executions are not necessary.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 9 - 39

Copyright © 2008, Oracle. All rights reserved.

Inlining Concepts

Examine the loop after inlining:

...
BEGIN

a := b;
FOR i IN 1..10 LOOP
IF –17 > 0 THEN

a := a*a;
END IF;
a := a*b;

END LOOP;
END small_pgm;
...

Inlining Concepts (continued)
The code in the slide shows what happens to the loop after inlining.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 9 - 40

Copyright © 2008, Oracle. All rights reserved.

Inlining Concepts

The loop is transformed in several steps:
a := b;
FOR i IN 1..10 LOOP ...
IF false THEN
a := a*a;

END IF;
a := a*b;

END LOOP;

a := b;
FOR i IN 1..10 LOOP ...
a := a*b;

END LOOP;

a := b;
a := a*b;
FOR i IN 1..10 LOOP ...
END LOOP;

a := b*b;
FOR i IN 1..10 LOOP ...

END LOOP;

Inlining Concepts (continued)
Because the insides of the procedure are now visible to the compiler, it can transform the loop in
several steps, as shown in the slide.
Instead of 11 assignments (one outside of the loop) and 10 multiplications, only one assignment
and one multiplication are performed. If the loop ran a million times (instead of 10), the savings
would be a million assignments. For code that contains deep loops that are executed frequently,
inlining offers tremendous savings.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 9 - 41

Copyright © 2008, Oracle. All rights reserved.

Inlining: Example

• Set the PLSQL_OPTIMIZE_LEVEL session-level parameter
to a value of 2 or 3:

– Setting it to 2 means no automatic inlining is attempted.
– Setting it to 3 means automatic inlining is attempted but no

pragmas are necessary.
• Within a PL/SQL subroutine, use PRAGMAINLINE:

– NO means no inlining occurs regardless of the level and
regardless of the YES pragmas.

– YES means inline at level 2 of a particular call and increase
the priority of inlining at level 3 for the call.

ALTER PROCEDURE small_pgm COMPILE
PLSQL_OPTIMIZE_LEVEL = 3 REUSE SETTINGS;

Inlining Concepts (continued)
To influence the optimizer to use inlining, you can set the PLSQL_OPTIMIZE_LEVEL
parameter to a value of 2 or higher. By setting this parameter, you are making a request that
inlining be used. It is up to the compiler to analyze the code and determine whether inlining is
appropriate. When the optimize level is set to 3, the PL/SQL compiler searches for calls that
might profit from inlining and inlines the most profitable calls.
In rare cases, if the overhead of the optimizer makes the compilation of very large applications
take too long, you can lower the optimization by setting PLSQL_OPTIMIZE_LEVEL=1
instead of its default value of 2. In even rarer cases, you might see a change in exception action,
either an exception that is not raised at all, or one that is raised earlier than expected. Setting
PLSQL_OPTIMIZE_LEVEL=1 prevents the code from being rearranged.
To enable inlining within a PL/SQL subroutine, you can use PRAGMA INLINE to suggest that a
specific call be inlined.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 9 - 42

Copyright © 2008, Oracle. All rights reserved.

Inlining: Example

After setting the PLSQL_OPTIMIZE_LEVEL parameter, use a
pragma:
CREATE OR REPLACE PROCEDURE small_pgm
IS

a PLS_INTEGER;
FUNCTION add_it(a PLS_INTEGER, b PLS_INTEGER)
RETURN PLS_INTEGER
IS
BEGIN
RETURN a + b;

END;
BEGIN

pragma INLINE (add_it, 'YES');
a := add_it(3, 4) + 6;

END small_pgm;

Inlining Concepts (continued)
Within a PL/SQL subroutine, you can use PRAGMA INLINE to suggest that a specific call be
inlined. When using PRAGMA INLINE, the first argument is the simple name of a subroutine, a
function name, a procedure name, or a method name. The second argument is either the constant
string ‘NO’ or ‘YES.’ The pragma can go before any statement or declaration. If you put it in the
wrong place, you receive a syntax error message from the compiler.
To identify that a specific call should not be inlined, use:

PRAGMA INLINE (function_name, 'NO');

Setting the PRAGMA INLINE to ‘NO’ always works, regardless of any other pragmas that might
also apply to the same statement. The pragma also applies at all optimization levels, and it
applies no matter how badly the compiler would like to inline a particular call. If you are certain
that you do not want some code inlined (perhaps due to the large size), you can set this to NO.
Setting the PRAGMA INLINE to ‘YES’ strongly encourages the compiler to inline the call. The
compiler keeps track of the resources used during inlining and makes the decision to stop
inlining when the cost becomes too high.
If inlining is requested and you have the compiler warnings turned on, you see the message:

PLW-06004: inlining of call of procedure ADD_IT requested.

If inlining is applied, you see the compiler warning (it is more of a message):
PLW-06005: inlining of call of procedure 'ADD_IT' was done.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 9 - 43

Copyright © 2008, Oracle. All rights reserved.

Inlining: Guidelines

• Pragmas apply only to calls in the next statement following
the pragma.

• Programs that make use of smaller helper subroutines are
good candidates for inlining.

• Only local subroutines can be inlined.
• You cannot inline an external subroutine.
• Inlining can increase the size of a unit.
• Be careful about suggesting to inline functions that are

deterministic.

Inlining: Guidelines
The compiler inlines code automatically, provided that you are using native compilation and
have set the PLSQL_OPTIMIZE_LEVEL to 3. If you have set PLSQL_Warnings =
'enable:all', using the SQL*Plus SHOW ERRORS command displays the name of the code
that is inlined.

• The PLW-06004 compiler message tells you that a pragma INLINE('YES') referring
to the named procedure was found. The compiler will, if possible, inline this call.

• The PLW-06005 compiler message tells you the name of the code that is inlined.
Alternatively, you can query the USER/ALL/DBA_ERRORS dictionary view.
Deterministic functions compute the same outputs for the same inputs every time it is invoked
and have no side effects. In Oracle Database 11g, the PL/SQL compiler can figure out whether a
function is deterministic; it may not find all that truly are, but it finds many of them. It never
mistakes a nondeterministic function for a deterministic function.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 9 - 44

Copyright © 2008, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Decide when to use native or interpreted compilation
• Tune your PL/SQL application. Tuning involves:

– Using the RETURNING clause and bulk binds
when appropriate

– Rephrasing conditional statements
– Identifying data type and constraint issues
– Understanding when to use SQL and PL/SQL

• Identify opportunities for inlining PL/QL code
• Use native compilation for faster PL/SQL execution

Summary
There are several methods that help you tune your PL/SQL application.
When tuning PL/SQL code, consider using the RETURNING clause and/or bulk binds to
improve processing. Be aware of conditional statements with an OR clause. Place the fastest
processing condition first. There are several data type and constraint issues that can help in
tuning an application.
By using native compilation, you can benefit from performance gains for computation-intensive
procedural operations.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 9 - 45

Copyright © 2008, Oracle. All rights reserved.

Practice 9: Overview

This practice covers the following topics:
• Tuning PL/SQL code to improve performance
• Coding with bulk binds to improve performance

Practice 9: Overview
In this practice, you tune some of the code that you created for the OE application.

• Break a previously built subroutine into smaller executable sections
• Pass collections into subroutines
• Add error handling for BULK INSERT

Use the OE schema for this practice.
For detailed instructions about performing this practice, see Appendix A, “Practice Solutions.”

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 9 - 46

Practice 9
In this practice, you measure and examine performance and tuning.
Writing Better Code

1. Open the lab_09_01.sql file and examine the package (the package body is shown
below):

CREATE OR REPLACE PACKAGE credit_card_pkg
IS

PROCEDURE update_card_info
(p_cust_id NUMBER, p_card_type VARCHAR2, p_card_no

VARCHAR2);

PROCEDURE display_card_info
(p_cust_id NUMBER);

END credit_card_pkg; -- package spec
/

CREATE OR REPLACE PACKAGE BODY credit_card_pkg
IS

PROCEDURE update_card_info
(p_cust_id NUMBER, p_card_type VARCHAR2, p_card_no

VARCHAR2)
IS

v_card_info typ_cr_card_nst;
i INTEGER;

BEGIN
SELECT credit_cards

INTO v_card_info
FROM customers
WHERE customer_id = p_cust_id;

-- continued on the next page

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 9 - 47

Practice 9 (continued)
-- continued from previous page

IF v_card_info.EXISTS(1) THEN -- cards exist, add more
i := v_card_info.LAST;
v_card_info.EXTEND(1);
v_card_info(i+1) := typ_cr_card(p_card_type,

p_card_no);
UPDATE customers

SET credit_cards = v_card_info
WHERE customer_id = p_cust_id;

ELSE -- no cards for this customer yet, construct one
UPDATE customers

SET credit_cards = typ_cr_card_nst
(typ_cr_card(p_card_type, p_card_no))

WHERE customer_id = p_cust_id;
END IF;

END update_card_info;

PROCEDURE display_card_info
(p_cust_id NUMBER)

IS
v_card_info typ_cr_card_nst;
i INTEGER;

BEGIN
SELECT credit_cards

INTO v_card_info
FROM customers
WHERE customer_id = p_cust_id;

IF v_card_info.EXISTS(1) THEN
FOR idx IN v_card_info.FIRST..v_card_info.LAST LOOP

DBMS_OUTPUT.PUT('Card Type: ' ||
v_card_info(idx).card_type || ' ');

DBMS_OUTPUT.PUT_LINE('/ Card No: ' ||
v_card_info(idx).card_num);

END LOOP;
ELSE

DBMS_OUTPUT.PUT_LINE('Customer has no credit cards.');
END IF;

END display_card_info;
END credit_card_pkg; -- package body
/

This code needs to be improved. The following issues exist in the code:
• The local variables use the INTEGER data type.
• The same SELECT statement is run in the two procedures.
• The same IF v_card_info.EXISTS(1) THEN statement is in the two procedures.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 9 - 48

Practice 9 (continued)
Using Efficient Data Types

2. To improve the code, make the following modifications:

a. Change the local INTEGER variables to use a more efficient data type.

b. Move the duplicated code into a function. The package specification for the
modification is:
CREATE OR REPLACE PACKAGE credit_card_pkg
IS

FUNCTION cust_card_info
(p_cust_id NUMBER, p_card_info IN OUT typ_cr_card_nst)
RETURN BOOLEAN;

PROCEDURE update_card_info
(p_cust_id NUMBER, p_card_type VARCHAR2, p_card_no

VARCHAR2);
PROCEDURE display_card_info
(p_cust_id NUMBER);

END credit_card_pkg; -- package spec
/

c. Have the function return TRUE if the customer has credit cards. The function should
return FALSE if the customer does not have credit cards. Pass an uninitialized nested
table into the function. The function places the credit card information into this
uninitialized parameter.

3. Test your modified code with the following data:
EXECUTE credit_card_pkg.update_card_info –

(120, 'AM EX', 55555555555)
PL/SQL procedure successfully completed.

EXECUTE credit_card_pkg.display_card_info(120)
Card Type: Visa / Card No: 11111111
Card Type: MC / Card No: 2323232323
Card Type: DC / Card No: 4444444
Card Type: AM EX / Card No: 55555555555

PL/SQL procedure successfully completed.

-- Note: If you did not complete Practice 4, your results
-- will be:

EXECUTE credit_card_pkg.display_card_info(120)
Card Type: AM EX / Card No: 55555555555

PL/SQL procedure successfully completed.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 9 - 49

Practice 9 (continued)
4. You need to modify the UPDATE_CARD_INFO procedure to return information (using the

RETURNING clause) about the credit cards being updated. Assume that this information
will be used by another application developer in your team, who is writing a graphical
reporting utility on customer credit cards.
a. Open the lab_09_04_a.sql file. It contains the modified code from the previous

question #2.

b. Modify the code to use the RETURNING clause to find information about the rows
that are affected by the UPDATE statements.

c. You can test your modified code with the following procedure (contained in
lab_09_04_c.sql):

CREATE OR REPLACE PROCEDURE test_credit_update_info
(p_cust_id NUMBER, p_card_type VARCHAR2, p_card_no NUMBER)
IS

v_card_info typ_cr_card_nst;
BEGIN

credit_card_pkg.update_card_info
(p_cust_id, p_card_type, p_card_no, v_card_info);

END test_credit_update_info;
/

d. Test your code with the following statements set in boldface:
EXECUTE test_credit_update_info(125, 'AM EX', 123456789)
PL/SQL procedure successfully completed.

SELECT credit_cards FROM customers WHERE customer_id = 125;
CREDIT_CARDS(CARD_TYPE, CARD_NUM)

TYP_CR_CARD_NST(TYP_CR_CARD('AM EX', 123456789))

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 9 - 50

Practice 9 (continued)
Collecting Exception Information

5. In this exercise, you test exception handling with the SAVE EXCEPTIONS clause.
a. Run the lab_09_05a.sql file to create a test table:

CREATE TABLE card_table
(accepted_cards VARCHAR2(50) NOT NULL);

b. Open the lab_09_05b.sql file and run the contents:
DECLARE

type typ_cards is table of VARCHAR2(50);
v_cards typ_cards := typ_cards
('Citigroup Visa', 'Nationscard MasterCard',

'Federal American Express', 'Citizens Visa',
'International Discoverer', 'United Diners Club');

BEGIN
v_cards.Delete(3);
v_cards.DELETE(6);
FORALL j IN v_cards.first..v_cards.last

SAVE EXCEPTIONS
EXECUTE IMMEDIATE

'insert into card_table (accepted_cards) values (
:the_card)'
USING v_cards(j);

END;
/

c. Note the output:__

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 9 - 51

Practice 9 (continued)
d. Open the lab_09_05_d.sql file and run the contents:

DECLARE
type typ_cards is table of VARCHAR2(50);
v_cards typ_cards := typ_cards
('Citigroup Visa', 'Nationscard MasterCard',

'Federal American Express', 'Citizens Visa',
'International Discoverer', 'United Diners Club');

bulk_errors EXCEPTION;
PRAGMA exception_init (bulk_errors, -24381);

BEGIN
v_cards.Delete(3);
v_cards.DELETE(6);
FORALL j IN v_cards.first..v_cards.last

SAVE EXCEPTIONS
EXECUTE IMMEDIATE

'insert into card_table (accepted_cards) values (
:the_card)'
USING v_cards(j);

EXCEPTION
WHEN bulk_errors THEN

FOR j IN 1..sql%bulk_exceptions.count
LOOP

Dbms_Output.Put_Line (
TO_CHAR(sql%bulk_exceptions(j).error_index) || ':
' || SQLERRM(-sql%bulk_exceptions(j).error_code));

END LOOP;
END;
/

e. Note the output:__

f. Why is the output different?

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 9 - 52

Practice 9 (continued)
Timing Performance of SIMPLE_INTEGER and PLS_INTEGER

6. In this exercise, you compare the performance between the PLS_INTEGER and
SIMPLE_INTEGER data types with native compilation:

a. Run the lab_09_06_a.sql file to create a testing procedure that contains
conditional compilation:
CREATE OR REPLACE PROCEDURE p
IS

t0 NUMBER :=0;
t1 NUMBER :=0;

$IF $$Simple $THEN
SUBTYPE My_Integer_t IS SIMPLE_INTEGER;
My_Integer_t_Name CONSTANT VARCHAR2(30) :=
'SIMPLE_INTEGER';

$ELSE
SUBTYPE My_Integer_t IS PLS_INTEGER;
My_Integer_t_Name CONSTANT VARCHAR2(30) := 'PLS_INTEGER';

$END

v00 My_Integer_t := 0; v01 My_Integer_t := 0;
v02 My_Integer_t := 0; v03 My_Integer_t := 0;
v04 My_Integer_t := 0; v05 My_Integer_t := 0;

two CONSTANT My_Integer_t := 2;
lmt CONSTANT My_Integer_t := 100000000;

BEGIN
t0 := DBMS_UTILITY.GET_CPU_TIME();
WHILE v01 < lmt LOOP

v00 := v00 + Two;
v01 := v01 + Two;
v02 := v02 + Two;
v03 := v03 + Two;
v04 := v04 + Two;
v05 := v05 + Two;

END LOOP;

IF v01 <> lmt OR v01 IS NULL THEN
RAISE Program_Error;

END IF;

t1 := DBMS_UTILITY.GET_CPU_TIME();
DBMS_OUTPUT.PUT_LINE(

RPAD(LOWER($$PLSQL_Code_Type), 15)||
RPAD(LOWER(My_Integer_t_Name), 15)||
TO_CHAR((t1-t0), '9999')||' centiseconds');

END p;

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle Database 11g: Advanced PL/SQL 9 - 53

Practice 9 (continued)
b. Open the lab_09_06_b.sql file and run the contents:

ALTER PROCEDURE p COMPILE
PLSQL_Code_Type = NATIVE PLSQL_CCFlags = 'simple:true'
REUSE SETTINGS;

EXECUTE p()

ALTER PROCEDURE p COMPILE
PLSQL_Code_Type = native PLSQL_CCFlags = 'simple:false'
REUSE SETTINGS;

EXECUTE p()

c. Note the output:__

d. Explain the output.

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

Oracle
 In

ternal &
 O

racle
 Aca

demy

Use
 O

nly

	Cover Page
	Table of Contents
	Preface
	Introduction
	PL/SQL Programming Concepts: Review
	Designing PL/SQL Code
	Working with Collections
	Using Advanced Interface Methods
	Implementing Fine-Grained Access Control for VPD
	Manipulating Large Objects
	Administering SecureFile LOBs
	Performance and Tuning
	Improving Performance with Caching
	Analyzing PL/SQL Code
	Profiling and Tracing PL/SQL Code
	Safeguarding Your Code Against SQL Injection Attacks
	Appendix A: Practices and Solutions
	Appendix B: Table Descriptions and Data
	Appendix C: Using SQL Developer
	Appendix D: Using SQL*Plus
	Appendix E: Review of JDeveloper

