
Copyright 2000-2010 Steven Feuerstein - Page 1

Dynamic SQL in PL/SQL

Steven Feuerstein
PL/SQL Evangelist, Quest Software

steven.feuerstein@quest.com

www.ToadWorld.com/SF

Copyright 2000-2006 Steven Feuerstein - Page 2

How to benefit most from this session

 Watch, listen, focus on concepts and principles.

 Download and use any of my the training materials:

 You have my permission to use all these materials to
do internal trainings and build your own applications.
– But remember: they are not production ready.

– Modify them to fit your needs and then test them!

filename_from_demo_zip.sql

 Download and use any of my scripts (examples,
performance scripts, reusable code) from the
same location: the demo.zip file.

http://www.ToadWorld.com/SFPL/SQL Obsession

Agenda

 Overview of dynamic SQL

 Dynamic DDL

 Dynamic DML

 Dynamic Queries

 Dynamic PL/SQL

 Advanced topics

 Best Practices

Copyright 2000-2008 Steven Feuerstein - Page 3

Copyright 2000-2008 Steven Feuerstein - Page 4

What is Dynamic SQL?

 Dynamic SQL actually refers, in the world of

PL/SQL, to two things:

– SQL statements, such as a DELETE or DROP

TABLE, that are constructed and executed at run-

time.

– Anonymous PL/SQL blocks that are constructed,

compiled and executed at run-time.

'DROP ' ||
l_type || ' ' || l_name

'BEGIN ' ||
l_proc_name || ' (' ||
l_parameters || '); END;'

Copyright 2000-2008 Steven Feuerstein - Page 5

Some of the possibilities with Dynamic SQL

 Build ad-hoc query and update applications.

– The user decides what to do and see.

 Execute DDL statements from within

PL/SQL.

– Not otherwise allowed in a PL/SQL block.

 Soft-code your application logic, placing

business rules in tables and executing them

dynamically.

– Usually implemented through dynamic PL/SQL

Copyright 2000-2008 Steven Feuerstein - Page 6

Two Mechanisms Available

 DBMS_SQL

– A large and complex built-in package that made
dynamic SQL possible in Oracle7 and Oracle8.

 Native Dynamic SQL

– A new (with Oracle8i), native implementation of
dynamic SQL that does almost all of what
DBMS_SQL can do, but much more easily and
usually more efficiently.

– EXECUTE IMMEDIATE

– OPEN cv FOR 'SELECT ... '

Copyright 2000-2008 Steven Feuerstein - Page 7

Four Dynamic SQL Methods

 Method 1: DDL or DML without bind variables
– EXECUTE IMMEDIATE string

 Method 2: DML with fixed number of bind variables
– EXECUTE IMMEDIATE string USING

 Method 3: Query with fixed number of expressions in

the select list
– EXECUTE IMMEDIATE string INTO

 Method 4: Query with dynamic number of expressions

in select list or DML with dynamic number of bind

variables.

– DBMS_SQL is best. And then there's

dynamic PL/SQL....

Copyright 2000-2008 Steven Feuerstein - Page 8

Method 1: DDL within PL/SQL

 The simplest kind of dynamic SQL.

– All you can do is pass a string for execution, no
values are bound in, no values are passed out.

 Always performs an implicit commit.

 Should be used with great care, since a DDL
change can cause a ripple effect of invalidating
program units.

 Common problem: Insufficient privileges.

– Directly granted privileges are needed!
dropwhatever.sp

create_index.sp

settrig.sp

create_user.sql

ddl_insuff_privs.sql

Method 2: DML with fixed # of bind variables

 Add the USING clause to EXEC IMMEDIATE

to supply bind values for placeholders.

– Placeholders are strings starting with ":".

 USING elements can include a mode, just

like a parameter: IN, OUT or IN OUT.

– OUT and IN OUT are for dynamic PL/SQL

 Must provide a value for each placeholder.

– With dynamic SQL, even if the same placeholder

is repeated, you must provide the repeat value.

Copyright 2000-2008 Steven Feuerstein - Page 9

method_2_example.sql

updnval*.*

Copyright 2000-2008 Steven Feuerstein - Page 10

Dynamic FORALL Method 2 Example

 This example shows the use of bulk binding and

collecting, plus application of the RETURNING clause.

CREATE TYPE NumList IS TABLE OF NUMBER;
CREATE TYPE NameList IS TABLE OF VARCHAR2(15);

PROCEDURE update_emps (
col_in IN VARCHAR2, empnos_in IN numList) IS
enames NameList;

BEGIN
FORALL indx IN empnos_in.FIRST .. empnos_in.LAST

EXECUTE IMMEDIATE
'UPDATE emp SET ' || col_in || ' = ' || col_in

|| ' * 1.1 WHERE empno = :1
RETURNING ename INTO :2'
USING empnos_in (indx)
RETURNING BULK COLLECT INTO enames;

...
END;

Notice that empnos_in is

indexed, but enames is not.

Method 3: Query with fixed # in select list

 Add the INTO clause to EXEC IMMEDIATE

to retrieve values from query.

– May be in addition to the USING clause.

– If you don't know the number at compile time,

cannot use the INTO clause.

 Usually you are dealing with a dynamic table,

column name or WHERE clause.

 The INTO clause can contain a list of

variables, a record, a collection, etc.

Copyright 2000-2008 Steven Feuerstein - Page 11

tabcount_nds.sql

next_key.sf

method_3_examples.sql

Copyright 2000-2008 Steven Feuerstein - Page 12

Dynamic BULK COLLECT Method 3

 Now you can even avoid the OPEN FOR and just
grab your rows in a single pass!

CREATE OR REPLACE PROCEDURE fetch_by_loc (loc_in IN VARCHAR2)
IS

TYPE numlist_t IS TABLE OF NUMBER;
TYPE namelist_t IS TABLE OF employee.name%TYPE;
TYPE employee_t IS TABLE OF employee%ROWTYPE;

emp_cv sys_refcursor;

empnos numlist_t;
enames namelist_t;
l_employees employee_t;

BEGIN
OPEN emp_cv FOR 'SELECT empno, ename FROM emp_' || loc_in;
FETCH emp_cv BULK COLLECT INTO empnos, enames;
CLOSE emp_cv;

EXECUTE IMMEDIATE 'SELECT * FROM emp_' || loc_in
BULK COLLECT INTO l_employees;

END; return_nested_table.sf

Copyright 2000-2008 Steven Feuerstein - Page 13

Quiz!

PROCEDURE process_lineitem (
line_in IN PLS_INTEGER)

IS
BEGIN

IF line_in = 1
THEN

process_line1;
END IF;

IF line_in = 2
THEN

process_line2;
END IF;
...
IF line_in = 22045
THEN

process_line22045;
END IF;

END;

 What's wrong with

this code?

 How would you fix

it?

Copyright 2000-2008 Steven Feuerstein - Page 14

From 22,000 lines of code to 1!

 Identify the pattern and
resolve it either with reusable
modules or dynamic
abstractions.

PROCEDURE process_lineitem (
line_in IN INTEGER)

IS
BEGIN

IF line_in = 1
THEN

process_line1;
END IF;

IF line_in = 2
THEN

process_line2;
END IF;
...
IF line_in = 22045
THEN

process_line22045;
END IF;

END;

PROCEDURE process_lineitem (
line_in IN INTEGER)

IS
BEGIN

EXECUTE IMMEDIATE
'BEGIN process_line'||

line_in ||'; END;';
END;

dynplsql.txt

Copyright 2000-2008 Steven Feuerstein - Page 15

Dynamic PL/SQL

 Dynamically construct, compile and run an
anonymous block with EXECUTE IMMEDIATE.

– Begins with BEGIN or DECLARE.

– Ends with END;. The trailing semi-colon is required;
otherwise it is parsed as an SQL statement.

 You can only reference globally-accessible data
structures (declared in a package specification).

 Exceptions can (and should) be trapped in the
block from which the dynamic PL/SQL was
executed.

dynplsql8i.sp

dynplsql_nolocal.sql

Copyright 2000-2007 Steven Feuerstein - Page 16

Dynamic PL/SQL Possibilities

 There are so many possibilities....some things I have

done:

– Reduce code volume, improve maintainability.

– Generic string parsing engine: parse any string into your own

collection.

– Generic calculator engine.

– Implement support for "indirect referencing": read and

change values of variables whose names are only

determined at run-time.

 And there are also dangers: code injection.

dynvar.pkg

dyncalc.pkg

Copyright 2000-2007 Steven Feuerstein - Page 17

How to build dynamic PL/SQL code

 1. Build a static version of the logic you want

to execute dynamically.

– Test it thoroughly.

 2. Identify the portions of the static code

which will need to be made dynamic.

 3. Convert the block, concatenating or

binding those portions which are now

dynamic.

Copyright 2000-2007 Steven Feuerstein - Page 18

1. Write and verify the static block code.

 Here is a
static
program to
parse a
string of
directories
for the
path list.

PROCEDURE setpath (str IN VARCHAR2, delim IN VARCHAR2 := c_delim)
IS

v_loc PLS_INTEGER;
v_startloc PLS_INTEGER := 1;
v_item VARCHAR2 (2000);

BEGIN
dirs.DELETE;
LOOP

v_loc := INSTR (str, delim, v_startloc);

IF v_loc = v_startloc
THEN

v_item := NULL;
ELSIF v_loc = 0
THEN

v_item := SUBSTR (str, v_startloc);
ELSE

v_item := SUBSTR (str, v_startloc, v_loc - v_startloc);
END IF;

dirs (dirs.COUNT + 1) := v_item;

IF v_loc = 0
THEN

EXIT;
ELSE

v_startloc := v_loc + 1;
END IF;

END LOOP;
END set_path;

filepath.pkg

Copyright 2000-2007 Steven Feuerstein - Page 19

2. Identify the dynamic elements of the block.

PROCEDURE setpath (str IN VARCHAR2, delim IN VARCHAR2 := c_delim)
IS

v_loc PLS_INTEGER;
v_startloc PLS_INTEGER := 1;
v_item VARCHAR2 (2000);

BEGIN
dirs.DELETE;
LOOP

v_loc := INSTR (str, delim, v_startloc);

IF v_loc = v_startloc
THEN

v_item := NULL;
ELSIF v_loc = 0
THEN

v_item := SUBSTR (str, v_startloc);
ELSE

v_item := SUBSTR (str, v_startloc, v_loc - v_startloc);
END IF;

dirs (dirs.COUNT + 1) := v_item;

IF v_loc = 0
THEN

EXIT;
ELSE

v_startloc := v_loc + 1;
END IF;

END LOOP;
END set_path;

Dynamic code

Bind variable

Copyright 2000-2007 Steven Feuerstein - Page 20

3a. Convert from static to dynamic block.

 Assign the

complex

string to a

variable.

 Makes it

easier to

report

errors and

debug.

dynblock :=
'DECLARE

v_loc PLS_INTEGER;
v_start PLS_INTEGER := 1;
v_item ' || datatype || ';

BEGIN ' ||
collname || '.DELETE;
IF :str IS NOT NULL
THEN

LOOP
v_loc := INSTR (:str, :delim, v_start);
IF v_loc = v_startloc
THEN

v_item := NULL;
ELSIF v_loc = 0
THEN

v_item := SUBSTR (:str, v_start);
ELSE

v_item := SUBSTR (:str, v_start, v_loc - v_start);
END IF;' ||
collname || '(' || nextrowstring || ') := v_item;

IF v_loc = 0 THEN EXIT;
ELSE v_start := v_loc + 1;
END IF;

END LOOP;
END IF;

END;';
str2list.pkg

Copyright 2000-2007 Steven Feuerstein - Page 21

3b. Execute the dynamic block.

 With dynamic PL/SQL, even if you reference

the same bind variable more than once, you

only specify it once in the USING clause.

– In other words, PL/SQL is using a variation of

"named notation" rather than the default

positional notation for dynamic SQL statements.

EXECUTE IMMEDIATE dynblock
USING str, delim;

Advanced Topics

 Dynamic SQL method 4

– Most generic and challenging scenario

 Parsing very long strings

 Describe columns in query

 The problem of SQL injection

 Oracle11g enhancements

Copyright 2000-2008 Steven Feuerstein - Page 22

Copyright 2000-2008 Steven Feuerstein - Page 23

Method 4 Dynamic SQL with DBMS_SQL

 Method 4 dynamic SQL is the most generalized
and most complex - by far!

– You don't know at compile time either the number of
columns or the number of bind variables.

– With DBMS_SQL, you must put calls to
DBMS_SQL.DEFINE_COLUMN and/or
DBMS_SQL.BIND_VARIABLE into loops.

 With NDS, you must shift from dynamic SQL to
dynamic PL/SQL.

– How else can you have a variable INTO or USING
clause?

Copyright 2000-2008 Steven Feuerstein - Page 24

Dynamic "SELECT * FROM <table>" in PL/SQL

 You provide the table and WHERE clause. I

display all the data.

– I don't know in advance which or how many rows

to query.

 I can obtain the column information from

ALL_TAB_COLUMNS...and from there the

fun begins!

 A relatively simple example to use as a

starting point.
intab_dbms_sql.sp - uses DBMS_SQL

intab_nds.sp - uses NDS

intab.tst

Copyright 2000-2008 Steven Feuerstein - Page 25

Pseudo-code flow for
DBMS_SQL implementation

BEGIN
FOR each-column-in-table LOOP

add-column-to-select-list;
END LOOP;

DBMS_SQL.PARSE (cur, select_string, DBMS_SQL.NATIVE);

FOR each-column-in-table LOOP
DBMS_SQL.DEFINE_COLUMN (cur, nth_col, datatype);

END LOOP;

fdbk := DBMS_SQL.EXECUTE (cur);

LOOP
fetch-a-row;
FOR each-column-in-table LOOP

DBMS_SQL.COLUMN_VALUE (cur, nth_col, val);
END LOOP;

END LOOP;
END;

Build the

SELECT list

Define each

column

Extract each

value

Parse the

variable SQL

Execute the

query

Lots of code, but relatively

straightforwardAlso:

dyn_placeholder.*

Copyright 2000-2008 Steven Feuerstein - Page 26

Parsing very long strings

 One problem with EXECUTE IMMEDIATE is

that you pass it a single VARCHAR2 string.

– Maximum length 32K.

– Very likely to happen when you are generating SQL

statements based on tables with many columns.

– Also when you want to dynamically compile a

program.

 So what do you do when your string is longer?

– In Oracle11g, can pass CLOBs...

– Prior to 11g, time to switch to DBMS_SQL!

Copyright 2000-2008 Steven Feuerstein - Page 27

DBMS_SQL.PARSE overloading for collections

 Oracle offers an overloading of

DBMS_SQL.PARSE that accepts a collection

of strings, rather than a single string.

 DBMS_SQL offers two different array types:

– DBMS_SQL.VARCHAR2S - max 255 bytes.

– DBMS_SQL.VARCHAR2A - max 32,767 bytes

 New in Oracle11g: both NDS and

DBMS_SQL accept CLOBs.

exec_ddl_from_file.sql

Copyright 2000-2008 Steven Feuerstein - Page 28

Describe columns in a query

 DBMS_SQL offers the ability to "ask" a

cursor to describe the columns defined in

that cursor.

 By using the DESCRIBE_COLUMNS

procedure, you can sometimes avoid

complex parsing and analysis logic.

– Particularly useful with method 4 dynamic SQL.

desccols.pkg

desccols.tst

Copyright 2000-2008 Steven Feuerstein - Page 29

SQL (code) Injection

 "Injection" means that unintended and often
malicious code is inserted into a dynamic SQL
statement.
– Biggest risk occurs with dynamic PL/SQL, but it is also

possible to subvert SQL statements.

 Best ways to avoid injection:
– Restrict privileges tightly on user schemas.

– Use bind variables whenever possible.

– Check dynamic text for dangerous text.

– Use DBMS_ASSERT to validate object names, like
tables and views.

– Preface all built-in packages with "SYS." code_injection.sql

sql_guard.*

dbms_assert_demo.sql

Oracle11g Enhancements

 EXECUTE IMMEDIATE a CLOB.

 Interoperability

– Convert DBMS_SQL cursor to cursor variable

– Convert cursor variable to DBMS_SQL cursor

 Improved security

– Random generation of DBMS_SQL cursor

handles

– Denial of access/use of DBMS_SQL with invalid

cursor or change of effective user.

Copyright 2000-2008 Steven Feuerstein - Page 30

Interoperability

 DBMS_SQL.TO_REFCURSOR

– Cursor handle to cursor variable

– Useful when you need DBMS_SQL to bind and

execute, but easier to fetch through cursor

variable.

 DBMS_SQL.TO_CURSOR

– Cursor variable to cursor handle

– Binding is static but SELECT list is dynamic

Copyright 2000-2008 Steven Feuerstein - Page 31

11g_to_cursorid.sql

11g_to_refcursor.sql

Copyright 2000-2008 Steven Feuerstein - Page 32

Best Practices for Dynamic SQL

 Stored programs with dynamic SQL should be defined
as AUTHID CURRENT_USER.

 Remember that dynamic DDL causes an implicit
commit.
– Consider making all DDL programs autonomous

transactions.

 Always EXECUTE IMMEDIATE a variable, so that you
can then display/log/view that variable's value in case
of an error.

 Avoid concatenation;
bind whenever possible. dropwhatever.sp

usebinding.sp

toomuchbinding.sp

useconcat*.*

ultrabind.*

Copyright 2000-2008 Steven Feuerstein - Page 33

NDS or DBMS_SQL: Which should you use?

 Reasons to go with NDS:

– Ease of use

– Works with all SQL

datatypes (including

user-defined object and

collection types)

– Fetch into records and

collections of records

– Usually faster runtime

performance

 Why You'd Use DBMS_SQL:

– Method 4 Dynamic SQL

– DESCRIBE columns of

cursor

– SQL statements larger than

32K (prior to 11g)

– Better reuse of parsed SQL

statements -- persistent

cursor handles!

Bottom line: NDS should be your first choice.

Dynamic SQL Conclusions

 Dynamic SQL is needed in most

applications.

 Native dynamic SQL makes it easy.

 Increased complexity means you need to

take more care to write code that is easy to

understand and maintain.

 And now...a demonstration of the Oracle

evaluation website!
Copyright 2000-2008 Steven Feuerstein - Page 34

