
Copyright 2000-2010 Steven Feuerstein - Page 1

Dynamic SQL in PL/SQL

Steven Feuerstein
PL/SQL Evangelist, Quest Software

steven.feuerstein@quest.com

www.ToadWorld.com/SF

Copyright 2000-2006 Steven Feuerstein - Page 2

How to benefit most from this session

 Watch, listen, focus on concepts and principles.

 Download and use any of my the training materials:

 You have my permission to use all these materials to
do internal trainings and build your own applications.
– But remember: they are not production ready.

– Modify them to fit your needs and then test them!

filename_from_demo_zip.sql

 Download and use any of my scripts (examples,
performance scripts, reusable code) from the
same location: the demo.zip file.

http://www.ToadWorld.com/SFPL/SQL Obsession

Agenda

 Overview of dynamic SQL

 Dynamic DDL

 Dynamic DML

 Dynamic Queries

 Dynamic PL/SQL

 Advanced topics

 Best Practices

Copyright 2000-2008 Steven Feuerstein - Page 3

Copyright 2000-2008 Steven Feuerstein - Page 4

What is Dynamic SQL?

 Dynamic SQL actually refers, in the world of

PL/SQL, to two things:

– SQL statements, such as a DELETE or DROP

TABLE, that are constructed and executed at run-

time.

– Anonymous PL/SQL blocks that are constructed,

compiled and executed at run-time.

'DROP ' ||
l_type || ' ' || l_name

'BEGIN ' ||
l_proc_name || ' (' ||
l_parameters || '); END;'

Copyright 2000-2008 Steven Feuerstein - Page 5

Some of the possibilities with Dynamic SQL

 Build ad-hoc query and update applications.

– The user decides what to do and see.

 Execute DDL statements from within

PL/SQL.

– Not otherwise allowed in a PL/SQL block.

 Soft-code your application logic, placing

business rules in tables and executing them

dynamically.

– Usually implemented through dynamic PL/SQL

Copyright 2000-2008 Steven Feuerstein - Page 6

Two Mechanisms Available

 DBMS_SQL

– A large and complex built-in package that made
dynamic SQL possible in Oracle7 and Oracle8.

 Native Dynamic SQL

– A new (with Oracle8i), native implementation of
dynamic SQL that does almost all of what
DBMS_SQL can do, but much more easily and
usually more efficiently.

– EXECUTE IMMEDIATE

– OPEN cv FOR 'SELECT ... '

Copyright 2000-2008 Steven Feuerstein - Page 7

Four Dynamic SQL Methods

 Method 1: DDL or DML without bind variables
– EXECUTE IMMEDIATE string

 Method 2: DML with fixed number of bind variables
– EXECUTE IMMEDIATE string USING

 Method 3: Query with fixed number of expressions in

the select list
– EXECUTE IMMEDIATE string INTO

 Method 4: Query with dynamic number of expressions

in select list or DML with dynamic number of bind

variables.

– DBMS_SQL is best. And then there's

dynamic PL/SQL....

Copyright 2000-2008 Steven Feuerstein - Page 8

Method 1: DDL within PL/SQL

 The simplest kind of dynamic SQL.

– All you can do is pass a string for execution, no
values are bound in, no values are passed out.

 Always performs an implicit commit.

 Should be used with great care, since a DDL
change can cause a ripple effect of invalidating
program units.

 Common problem: Insufficient privileges.

– Directly granted privileges are needed!
dropwhatever.sp

create_index.sp

settrig.sp

create_user.sql

ddl_insuff_privs.sql

Method 2: DML with fixed # of bind variables

 Add the USING clause to EXEC IMMEDIATE

to supply bind values for placeholders.

– Placeholders are strings starting with ":".

 USING elements can include a mode, just

like a parameter: IN, OUT or IN OUT.

– OUT and IN OUT are for dynamic PL/SQL

 Must provide a value for each placeholder.

– With dynamic SQL, even if the same placeholder

is repeated, you must provide the repeat value.

Copyright 2000-2008 Steven Feuerstein - Page 9

method_2_example.sql

updnval*.*

Copyright 2000-2008 Steven Feuerstein - Page 10

Dynamic FORALL Method 2 Example

 This example shows the use of bulk binding and

collecting, plus application of the RETURNING clause.

CREATE TYPE NumList IS TABLE OF NUMBER;
CREATE TYPE NameList IS TABLE OF VARCHAR2(15);

PROCEDURE update_emps (
col_in IN VARCHAR2, empnos_in IN numList) IS
enames NameList;

BEGIN
FORALL indx IN empnos_in.FIRST .. empnos_in.LAST

EXECUTE IMMEDIATE
'UPDATE emp SET ' || col_in || ' = ' || col_in

|| ' * 1.1 WHERE empno = :1
RETURNING ename INTO :2'
USING empnos_in (indx)
RETURNING BULK COLLECT INTO enames;

...
END;

Notice that empnos_in is

indexed, but enames is not.

Method 3: Query with fixed # in select list

 Add the INTO clause to EXEC IMMEDIATE

to retrieve values from query.

– May be in addition to the USING clause.

– If you don't know the number at compile time,

cannot use the INTO clause.

 Usually you are dealing with a dynamic table,

column name or WHERE clause.

 The INTO clause can contain a list of

variables, a record, a collection, etc.

Copyright 2000-2008 Steven Feuerstein - Page 11

tabcount_nds.sql

next_key.sf

method_3_examples.sql

Copyright 2000-2008 Steven Feuerstein - Page 12

Dynamic BULK COLLECT Method 3

 Now you can even avoid the OPEN FOR and just
grab your rows in a single pass!

CREATE OR REPLACE PROCEDURE fetch_by_loc (loc_in IN VARCHAR2)
IS

TYPE numlist_t IS TABLE OF NUMBER;
TYPE namelist_t IS TABLE OF employee.name%TYPE;
TYPE employee_t IS TABLE OF employee%ROWTYPE;

emp_cv sys_refcursor;

empnos numlist_t;
enames namelist_t;
l_employees employee_t;

BEGIN
OPEN emp_cv FOR 'SELECT empno, ename FROM emp_' || loc_in;
FETCH emp_cv BULK COLLECT INTO empnos, enames;
CLOSE emp_cv;

EXECUTE IMMEDIATE 'SELECT * FROM emp_' || loc_in
BULK COLLECT INTO l_employees;

END; return_nested_table.sf

Copyright 2000-2008 Steven Feuerstein - Page 13

Quiz!

PROCEDURE process_lineitem (
line_in IN PLS_INTEGER)

IS
BEGIN

IF line_in = 1
THEN

process_line1;
END IF;

IF line_in = 2
THEN

process_line2;
END IF;
...
IF line_in = 22045
THEN

process_line22045;
END IF;

END;

 What's wrong with

this code?

 How would you fix

it?

Copyright 2000-2008 Steven Feuerstein - Page 14

From 22,000 lines of code to 1!

 Identify the pattern and
resolve it either with reusable
modules or dynamic
abstractions.

PROCEDURE process_lineitem (
line_in IN INTEGER)

IS
BEGIN

IF line_in = 1
THEN

process_line1;
END IF;

IF line_in = 2
THEN

process_line2;
END IF;
...
IF line_in = 22045
THEN

process_line22045;
END IF;

END;

PROCEDURE process_lineitem (
line_in IN INTEGER)

IS
BEGIN

EXECUTE IMMEDIATE
'BEGIN process_line'||

line_in ||'; END;';
END;

dynplsql.txt

Copyright 2000-2008 Steven Feuerstein - Page 15

Dynamic PL/SQL

 Dynamically construct, compile and run an
anonymous block with EXECUTE IMMEDIATE.

– Begins with BEGIN or DECLARE.

– Ends with END;. The trailing semi-colon is required;
otherwise it is parsed as an SQL statement.

 You can only reference globally-accessible data
structures (declared in a package specification).

 Exceptions can (and should) be trapped in the
block from which the dynamic PL/SQL was
executed.

dynplsql8i.sp

dynplsql_nolocal.sql

Copyright 2000-2007 Steven Feuerstein - Page 16

Dynamic PL/SQL Possibilities

 There are so many possibilities....some things I have

done:

– Reduce code volume, improve maintainability.

– Generic string parsing engine: parse any string into your own

collection.

– Generic calculator engine.

– Implement support for "indirect referencing": read and

change values of variables whose names are only

determined at run-time.

 And there are also dangers: code injection.

dynvar.pkg

dyncalc.pkg

Copyright 2000-2007 Steven Feuerstein - Page 17

How to build dynamic PL/SQL code

 1. Build a static version of the logic you want

to execute dynamically.

– Test it thoroughly.

 2. Identify the portions of the static code

which will need to be made dynamic.

 3. Convert the block, concatenating or

binding those portions which are now

dynamic.

Copyright 2000-2007 Steven Feuerstein - Page 18

1. Write and verify the static block code.

 Here is a
static
program to
parse a
string of
directories
for the
path list.

PROCEDURE setpath (str IN VARCHAR2, delim IN VARCHAR2 := c_delim)
IS

v_loc PLS_INTEGER;
v_startloc PLS_INTEGER := 1;
v_item VARCHAR2 (2000);

BEGIN
dirs.DELETE;
LOOP

v_loc := INSTR (str, delim, v_startloc);

IF v_loc = v_startloc
THEN

v_item := NULL;
ELSIF v_loc = 0
THEN

v_item := SUBSTR (str, v_startloc);
ELSE

v_item := SUBSTR (str, v_startloc, v_loc - v_startloc);
END IF;

dirs (dirs.COUNT + 1) := v_item;

IF v_loc = 0
THEN

EXIT;
ELSE

v_startloc := v_loc + 1;
END IF;

END LOOP;
END set_path;

filepath.pkg

Copyright 2000-2007 Steven Feuerstein - Page 19

2. Identify the dynamic elements of the block.

PROCEDURE setpath (str IN VARCHAR2, delim IN VARCHAR2 := c_delim)
IS

v_loc PLS_INTEGER;
v_startloc PLS_INTEGER := 1;
v_item VARCHAR2 (2000);

BEGIN
dirs.DELETE;
LOOP

v_loc := INSTR (str, delim, v_startloc);

IF v_loc = v_startloc
THEN

v_item := NULL;
ELSIF v_loc = 0
THEN

v_item := SUBSTR (str, v_startloc);
ELSE

v_item := SUBSTR (str, v_startloc, v_loc - v_startloc);
END IF;

dirs (dirs.COUNT + 1) := v_item;

IF v_loc = 0
THEN

EXIT;
ELSE

v_startloc := v_loc + 1;
END IF;

END LOOP;
END set_path;

Dynamic code

Bind variable

Copyright 2000-2007 Steven Feuerstein - Page 20

3a. Convert from static to dynamic block.

 Assign the

complex

string to a

variable.

 Makes it

easier to

report

errors and

debug.

dynblock :=
'DECLARE

v_loc PLS_INTEGER;
v_start PLS_INTEGER := 1;
v_item ' || datatype || ';

BEGIN ' ||
collname || '.DELETE;
IF :str IS NOT NULL
THEN

LOOP
v_loc := INSTR (:str, :delim, v_start);
IF v_loc = v_startloc
THEN

v_item := NULL;
ELSIF v_loc = 0
THEN

v_item := SUBSTR (:str, v_start);
ELSE

v_item := SUBSTR (:str, v_start, v_loc - v_start);
END IF;' ||
collname || '(' || nextrowstring || ') := v_item;

IF v_loc = 0 THEN EXIT;
ELSE v_start := v_loc + 1;
END IF;

END LOOP;
END IF;

END;';
str2list.pkg

Copyright 2000-2007 Steven Feuerstein - Page 21

3b. Execute the dynamic block.

 With dynamic PL/SQL, even if you reference

the same bind variable more than once, you

only specify it once in the USING clause.

– In other words, PL/SQL is using a variation of

"named notation" rather than the default

positional notation for dynamic SQL statements.

EXECUTE IMMEDIATE dynblock
USING str, delim;

Advanced Topics

 Dynamic SQL method 4

– Most generic and challenging scenario

 Parsing very long strings

 Describe columns in query

 The problem of SQL injection

 Oracle11g enhancements

Copyright 2000-2008 Steven Feuerstein - Page 22

Copyright 2000-2008 Steven Feuerstein - Page 23

Method 4 Dynamic SQL with DBMS_SQL

 Method 4 dynamic SQL is the most generalized
and most complex - by far!

– You don't know at compile time either the number of
columns or the number of bind variables.

– With DBMS_SQL, you must put calls to
DBMS_SQL.DEFINE_COLUMN and/or
DBMS_SQL.BIND_VARIABLE into loops.

 With NDS, you must shift from dynamic SQL to
dynamic PL/SQL.

– How else can you have a variable INTO or USING
clause?

Copyright 2000-2008 Steven Feuerstein - Page 24

Dynamic "SELECT * FROM <table>" in PL/SQL

 You provide the table and WHERE clause. I

display all the data.

– I don't know in advance which or how many rows

to query.

 I can obtain the column information from

ALL_TAB_COLUMNS...and from there the

fun begins!

 A relatively simple example to use as a

starting point.
intab_dbms_sql.sp - uses DBMS_SQL

intab_nds.sp - uses NDS

intab.tst

Copyright 2000-2008 Steven Feuerstein - Page 25

Pseudo-code flow for
DBMS_SQL implementation

BEGIN
FOR each-column-in-table LOOP

add-column-to-select-list;
END LOOP;

DBMS_SQL.PARSE (cur, select_string, DBMS_SQL.NATIVE);

FOR each-column-in-table LOOP
DBMS_SQL.DEFINE_COLUMN (cur, nth_col, datatype);

END LOOP;

fdbk := DBMS_SQL.EXECUTE (cur);

LOOP
fetch-a-row;
FOR each-column-in-table LOOP

DBMS_SQL.COLUMN_VALUE (cur, nth_col, val);
END LOOP;

END LOOP;
END;

Build the

SELECT list

Define each

column

Extract each

value

Parse the

variable SQL

Execute the

query

Lots of code, but relatively

straightforwardAlso:

dyn_placeholder.*

Copyright 2000-2008 Steven Feuerstein - Page 26

Parsing very long strings

 One problem with EXECUTE IMMEDIATE is

that you pass it a single VARCHAR2 string.

– Maximum length 32K.

– Very likely to happen when you are generating SQL

statements based on tables with many columns.

– Also when you want to dynamically compile a

program.

 So what do you do when your string is longer?

– In Oracle11g, can pass CLOBs...

– Prior to 11g, time to switch to DBMS_SQL!

Copyright 2000-2008 Steven Feuerstein - Page 27

DBMS_SQL.PARSE overloading for collections

 Oracle offers an overloading of

DBMS_SQL.PARSE that accepts a collection

of strings, rather than a single string.

 DBMS_SQL offers two different array types:

– DBMS_SQL.VARCHAR2S - max 255 bytes.

– DBMS_SQL.VARCHAR2A - max 32,767 bytes

 New in Oracle11g: both NDS and

DBMS_SQL accept CLOBs.

exec_ddl_from_file.sql

Copyright 2000-2008 Steven Feuerstein - Page 28

Describe columns in a query

 DBMS_SQL offers the ability to "ask" a

cursor to describe the columns defined in

that cursor.

 By using the DESCRIBE_COLUMNS

procedure, you can sometimes avoid

complex parsing and analysis logic.

– Particularly useful with method 4 dynamic SQL.

desccols.pkg

desccols.tst

Copyright 2000-2008 Steven Feuerstein - Page 29

SQL (code) Injection

 "Injection" means that unintended and often
malicious code is inserted into a dynamic SQL
statement.
– Biggest risk occurs with dynamic PL/SQL, but it is also

possible to subvert SQL statements.

 Best ways to avoid injection:
– Restrict privileges tightly on user schemas.

– Use bind variables whenever possible.

– Check dynamic text for dangerous text.

– Use DBMS_ASSERT to validate object names, like
tables and views.

– Preface all built-in packages with "SYS." code_injection.sql

sql_guard.*

dbms_assert_demo.sql

Oracle11g Enhancements

 EXECUTE IMMEDIATE a CLOB.

 Interoperability

– Convert DBMS_SQL cursor to cursor variable

– Convert cursor variable to DBMS_SQL cursor

 Improved security

– Random generation of DBMS_SQL cursor

handles

– Denial of access/use of DBMS_SQL with invalid

cursor or change of effective user.

Copyright 2000-2008 Steven Feuerstein - Page 30

Interoperability

 DBMS_SQL.TO_REFCURSOR

– Cursor handle to cursor variable

– Useful when you need DBMS_SQL to bind and

execute, but easier to fetch through cursor

variable.

 DBMS_SQL.TO_CURSOR

– Cursor variable to cursor handle

– Binding is static but SELECT list is dynamic

Copyright 2000-2008 Steven Feuerstein - Page 31

11g_to_cursorid.sql

11g_to_refcursor.sql

Copyright 2000-2008 Steven Feuerstein - Page 32

Best Practices for Dynamic SQL

 Stored programs with dynamic SQL should be defined
as AUTHID CURRENT_USER.

 Remember that dynamic DDL causes an implicit
commit.
– Consider making all DDL programs autonomous

transactions.

 Always EXECUTE IMMEDIATE a variable, so that you
can then display/log/view that variable's value in case
of an error.

 Avoid concatenation;
bind whenever possible. dropwhatever.sp

usebinding.sp

toomuchbinding.sp

useconcat*.*

ultrabind.*

Copyright 2000-2008 Steven Feuerstein - Page 33

NDS or DBMS_SQL: Which should you use?

 Reasons to go with NDS:

– Ease of use

– Works with all SQL

datatypes (including

user-defined object and

collection types)

– Fetch into records and

collections of records

– Usually faster runtime

performance

 Why You'd Use DBMS_SQL:

– Method 4 Dynamic SQL

– DESCRIBE columns of

cursor

– SQL statements larger than

32K (prior to 11g)

– Better reuse of parsed SQL

statements -- persistent

cursor handles!

Bottom line: NDS should be your first choice.

Dynamic SQL Conclusions

 Dynamic SQL is needed in most

applications.

 Native dynamic SQL makes it easy.

 Increased complexity means you need to

take more care to write code that is easy to

understand and maintain.

 And now...a demonstration of the Oracle

evaluation website!
Copyright 2000-2008 Steven Feuerstein - Page 34

